• Title/Summary/Keyword: Underwater Vehicle Dynamics Modeling

Search Result 11, Processing Time 0.029 seconds

Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase (초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구)

  • Kim, Seon Hong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.

Studies on Ventilation Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 가스 분사량 제어 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

Modeling and Simulation for the Initial Dynamics of a High Speed Underwater Vehicle Ejected from a Submerged Mother Ship (수중모함에서 사출되는 고속 수중운동체의 초기 거동 모델링 및 시뮬레이션)

  • Yoon, Hyeon Kyu;Cho, Hyeonjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.227-235
    • /
    • 2016
  • Heavy-weight high speed underwater vehicle(HSUV) is launched from the submerged mother ship. For the safety point of view, it is important to confirm whether the HSUV would touch the launching mother ship. In this paper, the hydrodynamic force and moment were modeled by the polynomials of motion variables and the simple lift and drag acting on a plate and cylinder which consist of the HSUV's several parts. The mother ship was assumed as the Rankine half body to consider the flow field near the moving ship. Such hydrodynamic force and moment were included in the 6 DOF equations of motion of the HSUV and the dynamic simulations for the various conditions of the HSUV until the propeller activation were performed. Developed simulation program is expected to reduce the number of expensive sea trial test to develop safety logic of the HSUV at the initial firing stage.

A Study on Design Constraints of a Supercavitating Underwater Vehicle (초공동 수중운동체의 설계 제약조건에 관한 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • This paper defines the design constraint in consideration of the dynamic characteristics and stability in the longitudinal direction of a supercavitating vehicle. Available range of the design variables is calculated by numerical simulation and the cavity modeling of vehicle dynamics is performed first. Configuration parameters of the supercavitating vehicle to determine the vehicle dynamics and characteristics of the cavity are defined as design variables. Design constraints are supercavitation, trim velocity, stability and vehicle dynamics in transition phase. Numerical results show that in accordance with the change of the design variables, the proposed design constraints reflect the physical characteristics of the supercavitating vehicle. This research finds the design region where the constraints of supercavity and the trim velocity are satisfied, and the stability analysis refines the design results by excluding the region where the stability is not guaranteed. The stability analysis is particularly important for a vehicle with the short fin span.

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle (초공동 수중운동체의 조종면 조합에 따른 심도 및 직진 제어성능 분석)

  • Yu, Beomyeol;Mo, Hyemin;Kim, Seungkeun;Hwang, Jong-Hyon;Park, Jeong-Hoon;Jeon, Yun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.435-448
    • /
    • 2021
  • This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

The effect of vehicle velocity and drift angle on through-body AUV tunnel thruster performance

  • Saunders, Aaron;Nahon, Meyer
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.297-315
    • /
    • 2011
  • New applications of streamlined Autonomous Underwater Vehicles require an AUV capable of completing missions with both high-speed straight-line runs and slow maneuvers or station keeping tasks. At low, or zero, forward speeds, the AUV's control surfaces become ineffective. To improve an AUV's low speed maneuverability, while maintaining a low drag profile, through-body tunnel thrusters have become a popular addition to modern AUV systems. The effect of forward vehicle motion and sideslip on these types of thrusters is not well understood. In order to characterize these effects and to adapt existing tunnel thruster models to include them, an experimental system was constructed. This system includes a transverse tunnel thruster mounted in a streamlined AUV. A 6-axis load cell mounted internally was used to measure the thrust directly. The AUV was mounted in Memorial University of Newfoundland's tow tank, and several tests were run to characterize the effect of vehicle motion on the transient and steady state thruster performance. Finally, a thruster model was modified to include these effects.

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Design on Yawing And Depth Controller And Analysis of Disturbance Characteristic about the AUV ISiMI (자율무인잠수정 이심이의 선수각 및 심도 제어기 설계와 외란 특성 분석)

  • Ma, Sung-Jin;Jun, Bong-Huan;Lee, Pan-Mook;Kim, Sang-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.351-354
    • /
    • 2006
  • In underwater environment, the control of AUV is difficult, because of the existence of parameter uncertainties and disturbances as well as highly nonlinear and coupled system dynamics. The requirement for the simple and robust controller which works satisfactorily in those dynamical uncertainties, call for a design using the PD or sliding mode controller. The PD controller is very popular controller in the industrial field and the sliding mode controller has been used successfully for the AUV controller design. In this paper, the two controllers arc designed for ISiMI(Integrated Submergible Intelligent Mission Implementation) AUV and the performances are compared by numerical simulation under the modeling uncertainty and disturbances. The design process of PD and sliding mode controller for ISiMI AUV and simulation results are included to compare the performances of the two controllers.

  • PDF