• 제목/요약/키워드: Underwater Survey

검색결과 114건 처리시간 0.028초

무인잠수정 기반 기뢰대항전체계 개발을 위한 소요기술 분석 (An Analysis of Required Technologies for Developing Unmanned Mine Countermeasure System Based on the Unmanned Underwater Vehicle)

  • 이기영
    • 한국군사과학기술학회지
    • /
    • 제14권4호
    • /
    • pp.579-589
    • /
    • 2011
  • One of the most significant UUV(Unmanned Underwater Vehicle) applications is MCM(Mine Countermeasure), which makes good use of UUV characteristics to provide covert, rapid, controlled and efficient survey of a potential minefield without risking a human operator. In this paper, a survey of the today's MCM missions where UUVs will play a role, the vehicle systems that are either under development or planned in the future are presented. And examines principal technical challenges and outline new enabling technologies. Particularly, this paper analyses current approaches to tacking these technologies and technological limitation of UUVs as a MCM platform, and research efforts to develop the technology necessary to meet the domestic MCM mission needs.

수중문화유산 보호를 위한 법제도 정비 및 효율적 관리방안 (A Study for Improving Direction of Legal Regime and Policy for Protecting our Underwater Cultural Heritages)

  • 박성욱
    • Ocean and Polar Research
    • /
    • 제27권2호
    • /
    • pp.171-179
    • /
    • 2005
  • Korea has many underwater cultural heritages within the east, west and south seas surrounding the Peninsula that indicate historically important sealanes for trade and transportation. As these underwater cultural heritages are the objects of despoilment because of their relatively easy access through modern technology, their often high historical and priceless value demands strong protection similar to or better than the land cultural properties. Currently, Korea does not have any concrete laws or regulations for the protection of underwater cultural heritages. Thus, these heritages iu, somewhat temporary and inappropriately subjected to laws and regulations relating to provisions of individual Laws concerning protection of cultural properties act, and statute of excavation of material fir buried national property, lost articles act etc.. Internationally, the UNESCO Convention on the Protection of the Underwater Cultural Heritage was adopted but not yet entered into force. Therefore, the protection of underwater cultural heritage has become an urgent matter. In this regard, this article's main purpose is to provide recommendations for improving direction of legal regime and policy for protecting our underwater cultural heritages. These legal regimes need provisions for definition of the underwater cultural heritage, scope of application, ownerships, jurisdictions and protection measures. And suggestions are provided in regard to policies for the protection of underwater cultural heritages that may improve organization and cooperation among concerned ministries and agencies, compensation system, restrictions for excavation of underwater relics, efficiency of survey of underwater surface and information system.

지표레이다(GPR) 탐사에 의한 하상퇴적물 조사

  • 장현삼;정성태
    • 지구물리
    • /
    • 제5권1호
    • /
    • pp.51-62
    • /
    • 2002
  • 지표레이다(GPR)를 이용하여 하상 퇴적물 조사를 수행하였다. 조사지역은 수심이 약 2.5 m 정도로 얕고, 물이 흐르지 않는 호수이며, 조사대상인 뻘(mud)층의 두께가 얇아 GPR이 매우 효율적인 탐사방법이다. 조사결과 수심하부 층서구조, 즉 mud층, 모래층, 자갈 및 기반암의 구조를 확실하게 파악할 수 있었다. 특히 mud층의 분포 및 총 퇴적량은 향후 이 지역에서의 준설을 위한 기초자료로 매우 중요하게 사용될 수 있을 것이다.

  • PDF

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

무인 잠수정 연구 개발 동향 분석 및 발전 방안 (Technology Development Trends Analysis and Development Plan of Unmanned Underwater Vehicle)

  • 이지은
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.233-239
    • /
    • 2019
  • 무인 잠수정은 접경지역이나 적 잠수함이나 잠수정이 출몰하는 위협지역에서 감시 정찰 임무 가능한 주요 무기체계로 국내 외에서 활발한 연구 개발이 진행되고 있다. 무인 잠수정의 주요 활용처는 민수 분야에서는 해저 자원 탐사, 재난 예측, 해저 지형 조사 등에 활용가능하고, 국방 분야에서는 위협 지역이 등에서 적 잠수함/정 등에 대한 대잠 정찰, 기뢰 제거 등에 활용 가능하다. 본 논문에서는 무인 잠수정의 무게별, 임무별 주요 분류에 대해서 살펴보고, 무게별 주요 분류 기준에 따라 휴대용급, 경량급, 중량급, 대형급 무인 잠수정의 국외 개발 동향을 조사 분석한다. 이를 기반으로 국내 무인 잠수정 개발 동향을 조사 분석하여 국외 대비 국내 현황을 살펴본다. 또한 앞서 조사 분석된 국내 외 주요 무인잠수정 개발 현황을 통하여, 본 논문에서는 미래 국내 무인 잠수정의 핵심 기술로 은밀성 강화와 통합 전장 운영이 가능한 자율제어 기술, 수중 장기 체류가 가능한 차세대 에너지원 기술, 소형화 및 경량화 기반의 정밀 센서 기술 등 미래 무인 잠수정에 대한 발전 방안을 제시한다.

심해무인잠수정 1차 케이블의 비선형 동적 해석 (Non-Liner Dynamic Analysis of First Cable of Deep-Sea Unmanned Underwater Vehicle)

  • 권도영;박한일;정동호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.123-130
    • /
    • 2004
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation of a deep-sea unmanned underwater vehicle. The first cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behaviour of the first marine cable. In this study, a numerical program is estabilished based on a finite difference method. The program is appled to a 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

  • PDF

심해 무인잠수정 1차 케이블의 동적거동 수치해석 (A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle)

  • 권도영;박한일;정동호
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

천해역 해저탐사 및 영상분석 기법 소개 (An Introduction to the Underwater Survey Operations using a Side Scan Sonar System)

  • 주영석;우종식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.156-159
    • /
    • 2001
  • Recently, side scan sonar system has been developed and operated to survey cable laying, sunken bodies, geometry of sea bottom and so on. It uses the acoustic signals, which are emitted from two transducer arrays, left and right sides, to get geometric information of the specified area. This system consists of transceiver board, towed body, deck unit and GPS receiver. The transceiver board, nested in a watertight canister, controls the transmitting and receiving of the acoustic pulses from transducer arrays. After receiving the scattered signals, it processes BP(Band Pass) filtering, AGC(Automatic Gain Control), TVG(Time Varying Gain) and Heterodyne. The deck init has the signal processing part, A/D converter, power supplier, and real-time monitoring part. The towed body has been designed to satisfy the optimal hydrodynamic behavior during towing, In this paper, brief introductions on the design theory of transceiving part and some results from the field which have been operated recently will be introduced.

  • PDF

심해 과학조사용 무인잠수정의 시스템 설계 (System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research)

  • 이판묵;이종무;전봉환;홍석원;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF