• Title/Summary/Keyword: Underwater Sound

Search Result 236, Processing Time 0.023 seconds

The Spectrum of Feeding Sound and the Response of Seabass , Filefish and Swellfish (한국 남해에서의 해수의 광학적 성질 - 농어 . 쥐치 . 검복 -)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.61-67
    • /
    • 1982
  • Optical properties of sea water were studied in the southern sea of Korea, based on ten oceanographic stations in July, 1980. Submarine daylight intensity was measured at intervals of 5m depth in the upper 70m layer by using the underwater irradiameter (Kahlsico # 268 WA 360). The mean absorption coefficients of the sea water were shown as 0.102 (0.066~0.137), 0.119 (0.069~0.154), 0.091 (0.054~.0123), and 0.095 (0.056~0.129) for clear, red, green, and blue color respectively. The transparency ranged from 13 to 25 meters (mean 17.1 m). The mean water color in this area was 3.9 (3-5) in Forel scales. The relation between absorption coefficient (k) and transparency (D) was k=1.17/D, k=2.01/D, k=1.52/D, and k=1.60/D for clear, red, green, and blue color respectively. The rates of light penetration for clear, red, green, and blue color in four different depths were computed with reference to the surface light intensity respectively. The mean rates of light penetration in proportion to depths were as follows; clear : 57.3%(5m), 20.82%(15m), 5.16%(30m), 0.94%(50m). red : 52.2%(5m), 15.99%(15m), 2.99%(30m), 0.39%(50m). green : 60.9%(5m), 24.51%(15m), 7.11%(30m), 1.56%(50m). blue : 59.4%(5m), 22.92%(15m), 6.09%(30m), 1.29%(50m).

  • PDF

A Study on the accuracy of speed measuring system by the Doppler effect -The error of speed single beam Doppler log over the ground by various trim- (Doppler 효과(效果)에 의한 속도계측장치(速力計測裝置)의 정도(精度)에 관(關)한 연구(硏究) -Single beam Doppler log의 트림 변화에 따른 대지속력(對地速力) 오차(誤差)-)

  • Kim, Koang-Hong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.179-187
    • /
    • 1997
  • Doppler log and current meter are based on the measurment of the doppler effect. Ship's speed over the ground measured by means of doppler log effect of underwater ultrasonic intends to get infulence by the difference of sound velocity, the ship's course, the sea bottom inclination, the trim and tranducer installation etc. This paper investigated on the error of speed over the ground by change of the trim comparing the real speed obtained by the mile post with the speed of single beam type doppler log on the trainning ship Kyeongyangho. The results are as follows ; 1. Indicating speed of doppler log is very much greatly influenced on variation of trim, but the real speed is less affected variation by trim. 2. The range of variation and error of speed over ground are smallest when ship's trim is 2.15m trim by the stern.

  • PDF

Investigation of the Noise Reduction in the Hollow Cylinder Structure (중공 원통형 구조물의 전달소음 감소 방안 연구)

  • Lee, Sang-Won;Lee, Jong-Kil;Jo, Chi-Yong
    • 대한공업교육학회지
    • /
    • v.36 no.1
    • /
    • pp.115-130
    • /
    • 2011
  • When the hollow cylinder structure moves in underwater with high speed structural can be propagated from the end of the structure to the front side. This noise can reduce the sensitivity of the conformal array which installed in the surface of the cylinder. To reduce this noise propagation it is suggested to install two self-reduction rings at the surrounding of the cylinder which is 500mm in diameter and 840mm in length. The places of the two noise reduction rings are 120mm and 240mm point from the end of the structure. Two noise reduction rings reduced 10.1 % of maximum stress. When outside noise frequency applied to the structure from the 4kZ to 6kHz, 20dB noise reduction was calculated using 6 order polynomial equation. When outside noise frequency also applied to the structure with 200Hz, 500Hz, 900Hz, maximum sound pressure level point moved to the end of the structure. Most conformal sensors are fabricated at the front side of the structure. Based on the simulation results proposed two rings can be reduced noise propagation from the tail of the structure effectively.

Variation of probability of sonar detection by internal waves in the South Western Sea of Jeju Island (제주 서남부해역에서 내부파에 의한 소나 탐지확률 변화)

  • An, Sangkyum;Park, Jungyong;Choo, Youngmin;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • Based on the measured data in the south western sea of Jeju Island during the SAVEX15(Shallow Water Acoustic Variability EXperiment 2015), the effect of internal waves on the PPD (Predictive Probability of Detection) of a sonar system was analyzed. The southern west sea of Jeju Island has complex flows due to internal waves and USC (Underwater Sound Channel). In this paper, sonar performance is predicted by probabilistic approach. The LFM (Linear Frequency Modulation) and MLS (Maximum Length Sequence) signals of 11 kHz - 31 kHz band of SAVEX15 data were processed to calculate the TL (Transmission Loss) and NL (Noise Level) at a distance of approximately 2.8 km from the source and the receiver. The PDF (Probability Density Function) of TL and NL is convoluted to obtain the PDF of the SE (Signal Excess) and the PPD according to the depth of the source and receiver is calculated. Analysis of the changes in the PPD over time when there are internal waves such as soliton packet and internal tide has confirmed that the PPD value is affected by different aspects.

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Ultasonic Reflection Characteristics of the Underwater Corner Reflector (수중코오너리프렉터의 초음파반사특성에 관한 연구)

  • Lee, Dae-Jae;Sin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1983
  • The corner reflector is used to increase the echoing area of radar targets in the air, and it can also be applied to increase the echoing area of the sonar targets under water. As the basic research for this application, the authors investigated the ultrasonic reflection characteristics under water for the corner reflector which was made of aluminum plate. The experiments were made by pulse measuring method with the magnetostrictive ferrite transducers of 28, 50 and 75KHz in the experimental water tank. The results obtained are as follows; 1. The target strength of corner reflectors were increased in proportion to the diameter and were greater at higher frequency of 75KHz than at lower frequency of 28KHz. 2. In the case of 5 corner reflectors of 150mm in diameter which have corner angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$the measured values of the maximum target strength at 75KHz were-25.0 dB, -17.2dB, -15.1dB, -13.4dB and 11.0dB, and then the number of main lobes showing the maximum target strength in the backscattering patterns were 24, 12, 8, 6 and 4, respectively. 3. When 7 corner reflector of 80mm in diameter and 90$^{\circ}$ in the corner angle was located on the minor axis of the horizontal section with directional angles of 0$^{\circ}$, 2.5$^{\circ}$, 5.0$^{\circ}$, 7.5$^{\circ}$, 10$^{\circ}$ and 12.5$^{\circ}$ against the sound beam axis, the measured values of the target strength on each position at 75KHz were -21.2dB, -21.9dB, -26.0dB, -30.5dB and -36.8dB, respectively.

  • PDF