• 제목/요약/키워드: Underwater Robotics

검색결과 197건 처리시간 0.025초

수중 로봇을 위한 다중 템플릿 및 가중치 상관 계수 기반의 물체 인식 및 추종 (Multiple Templates and Weighted Correlation Coefficient-based Object Detection and Tracking for Underwater Robots)

  • 김동훈;이동화;명현;최현택
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.142-149
    • /
    • 2012
  • The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.

도플러 속도계(DVL)를 위한 광대역 수중 음향 트랜스듀서 (Broad-Band Underwater Acoustic Transducer for Doppler Velocity Log)

  • 윤철호;이영필;고낙용;문용선
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.755-759
    • /
    • 2013
  • A broad-band underwater acoustic transducer that uses thickness vibration mode, derived from a disk type piezoelectric ceramic, has been proposed and designed for DVL (Doppler Velocity Log). Three different types of acoustic transducer were evaluated with respect to the transmitting voltage response, receiving voltage sensitivity and bandwidth of the transducer. The effect of the acoustic impedance matching layer and backing layer is discussed. The results demonstrated that three matching layer with lossy backing layer is the best configuration for underwater transducer. The trial underwater acoustic transducer with three matching layer has a frequency bandwidth of 55%, maximum transmitting voltage response of 200 dB and a maximum receiving voltage sensitivity of -187.3 dB.

동적 발란스의 원리를 이용한 수중 잠수정-매니퓰레이터 시스템의 동역학 시뮬레이션 (Dynamic Simulation of Underwater Vehicle-Manipulator Systems Using Principle of Dynamical Balance)

  • 한종희;정완균
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.152-160
    • /
    • 2007
  • In this paper, two schemes are introduced for dynamic simulation of underwater robotic systems. One is principle of dynamical balance, which is an easy and powerful tool for formulating dynamic equations of composite systems such as underwater vehicle-manipulator system. In the dynamic modeling, this principle gives us the closed-form of dynamic equations on matrix Lie group. The other is geometric integration algorithm, called 4-th order explicit Munthe-Kaas method. By this method, the derived differential equations can be integrated preserving geometric structure. Adopting these two schemes, dynamic simulation of underwater vehicle- manipulator system can be conducted more easily and more reliably.

  • PDF

수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계 (A fuzzy sliding mode controller design for the hovering system of underwater vehicles)

  • 김종식;김성민
    • 제어로봇시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

수중 측위 시스템과 SVR을 이용한 음영지역에서의 경로 추정 기법 (Path Estimation Method in Shadow Area Using Underwater Positioning System and SVR)

  • 박영식;송준우;이동혁;이장명
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.173-183
    • /
    • 2017
  • This paper proposes an integrated positioning system to localize a moving object in the shadow-area that exists in the water tank. The new water tank for underwater robots is constructed to evaluate the navigation performance of underwater vehicles. Several sensors are integrated in the water tank to provide the position information of the underwater vehicles. However there are some areas where the vehicle localization becomes very poor since the very limited sensors such as sonar and depth sensors are effective in underwater environment. Also there are many disturbances at sonar data. To reduce these disturbances, an extended Kalman filter has been adopted in this research. To localize the underwater vehicles under the hostile situations, a SVR (Support Vector Regression) has been systematically applied for estimating the position stochastically. To demonstrate the performance of the proposed algorithm (an extended Kalman filter + SVR analysis), a new UI (User Interface) has been developed.

수중운동체의 $H_\infty$ 심도제어기 설계 ($H_\infty$ Depth Controller Design for Underwater Vehicles)

  • 이만형;정금영;김인수;주효남;양승윤
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

구조화된 공간에서의 수중 무선 센서 네트워크를 이용한 위치 추정 시스템 (Infrastructure-based Localization System using Underwater Wireless Sensor Network)

  • 박대길;곽경민;정완균;김진현
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.699-705
    • /
    • 2012
  • In this paper, an infrastructure-based localization method using underwater wireless sensor network (UWSN) is addressed. A localization using the UWSN is necessary to widen the usage of underwater applications, however it is very difficult to establish the UWSN due to the restrictions of water. In this paper, to extend the usage of UWSN at the infrastructure, we propose a sophisticated UWSN localization method using the Received Signal Strength Indicator (RSSI) of the electromagnetic waves. During the electromagnetic waves propagating in underwater, there arises a lot of attenuation according to the distance, while the attenuation shows uniformity according to the distance. Using this characteristics, the localization system in underwater infrastructure is proposed and the experimental results show the effectiveness.

Mission Management Technique for Multi-sensor-based AUV Docking

  • Kang, Hyungjoo;Cho, Gun Rae;Kim, Min-Gyu;Lee, Mun-Jik;Li, Ji-Hong;Kim, Ho Sung;Lee, Hansol;Lee, Gwonsoo
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.181-193
    • /
    • 2022
  • This study presents a mission management technique that is a key component of underwater docking system used to expand the operating range of autonomous underwater vehicle (AUV). We analyzed the docking scenario and AUV operating environment, defining the feasible initial area (FIA) level, event level, and global path (GP) command to improve the rate of docking success and AUV safety. Non-holonomic constraints, mounted sensor characteristic, AUV and mission state, and AUV behavior were considered. Using AUV and docking station, we conducted experiments on land and at sea. The first test was conducted on land to prevent loss and damage of the AUV and verify stability and interconnection with other algorithms; it performed well in normal and abnormal situations. Subsequently, we attempted to dock under the sea and verified its performance; it also worked well in a sea environment. In this study, we presented the mission management technique and showed its performance. We demonstrated AUV docking with this algorithm and verified that the rate of docking success was higher compared to those obtained in other studies.

센서노드 선정기법 기반 수중 무선센서망 분산형 표적추적필터 (Sensor Nodes Selecting Schemes-based Distributed Target Tracking Filter for Underwater Wireless Sensor Networks)

  • 유창호;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.694-701
    • /
    • 2013
  • This paper deals with the problem of accurately tracking a single target moving through UWSNs (Underwater Wireless Sensor Networks) by employing underwater acoustic sensors. This paper addresses the issues of estimating the states of the target, and improving energy efficiency by applying a Kalman filter in a distributed architecture. Each underwater wireless sensor nodes composing the UWSNs is battery-powered, so the energy conservation problem is a critical issue. This paper provides an algorithm which increases the energy efficiency of each sensor node through WuS (Waked-up/Sleeping) and VM (Valid Measurement) selecting schemes. Simulation results illustrate the performance of the distributed tracking filter.

수중운동체의 유체계수 추정에 관한 연구 (A study on the hydrodynamic coefficients estimation of an underwater vehicle)

  • 양승윤;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.121-126
    • /
    • 1996
  • The hydrodynamic coefficients estimation (HCE) is important to design the autopilot and to predict the maneuverability of an underwater vehicle. In this paper, a system identification is proposed for an HCE of an underwater vehicle. First, we attempt to design the HCE algorithm which is insensitive to initial conditions and has good convergence, and which enables the estimation of the coefficents by using measured displacements only. Second, the sensor and measurement system which gauges the data from the full scale trials is constructed and the data smoothing algorithm is also designed to filter the noise due to irregular fluid flow without changing the data characteristics itself. Lastly the hydrodynamic coefficients are estimated by applying the measured data of full scale trials to the developed algorithm, and the estimated coefficients are verified by full scale trials.

  • PDF