• Title/Summary/Keyword: Underwater Robotics

Search Result 197, Processing Time 0.036 seconds

Mixed $H^{2}$/$H^{\infty}$ controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형시스템의 혼합 $H^{2}$/$H^{\infty}$ 제어기 설계)

  • 이갑래;정은태;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.560-564
    • /
    • 1996
  • A mixed H$^{2}$/$H^{\infty}$ controller design method for linear systems with time delay in all variables and parameter uncertainties in all system matrices is proposed. Robust $H^{\infty}$ performance and H$^{2}$ performance condition that accounts for model-matching of closed loop system and disturbance rejection is also derived. With expressing uncertain system with linear fractional transformation form, we transform the robust stability and performance problem to the H$^{2}$/$H^{\infty}$ optimization problem and design a mixed H$^{2}$/$H^{\infty}$ controller. Using the proposed method, mixed H$^{2}$/$H^{\infty}$ controller for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.t performance.ance.

  • PDF

Research on a Sea Snake Robot

  • Shiozaki, Hiroshi;Shimizu, Etsuro;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.951-956
    • /
    • 2005
  • Since a snake achieves various movements just by a slender body, the mechanism of it is very amazing Many researches have been focusing on a snake like robot and have done for it on the ground. However the meander motion of the snake not only can be done by ground creatures, but also can be done by a water creature such as a sea snake or an eel. Therefore, the purpose of our research is to develop an autonomous underwater robot like the sea snake. As an approach to this goal, we develop an experimental sea snake-like-robot for examining basic characteristics, including propulsion, a turning and other performance. Our developed robot is composed of the head and 4 bodies. Each body equips one servomotor, which is operated with pulse signal. In the head unit, 1- chip-microcomputer, which generates the servomotor control signal for realizing a snake motion and the battery, is equipped. Our robot is covered with a rubber film for the waterproof. Using our developed robot, characteristics of the snake-like-robot moved in water are examined.

  • PDF

Design of the Fuzzy Sliding Mode Controller and Neural Network Interpolator for UFV Depth Control

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.2-176
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over nonlinear characteristics. Second, it needs accurate performance which have small overshoot phenomenon and steady state error. Third, it needs continuous control input. Finally, it needs interpolation method which can solve the speed dependency problem of controller parameters. To solve these problems, we propose adepth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Reliability Analysis of Underwater Mobile Robot for Automated Reactor Inspection using Bayesian Belief Nets

  • Eom, Heung-Seop;Kim, Jae-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.137.5-137
    • /
    • 2001
  • This paper proposes a method that combines diverse evidence relevant to the reliability to evaluate the reliability of complicated systems such as robots. In practice, reliability experts combine diverse evidences relevant to the reliability and infer the answers by using their own way that are mostly informal. The proposed method also combines diverse evidence and performs inferences but informal and quantitative way by using the benefits of Bayesian Belief Nets (BBN). Diverse evidences could be those from dassical analysis techniques, test results, quality assurance about the process of manufacturing, and the quality of the company or development team, etc. Some of these evidences are qualitative and others are quantitative. Both are ...

  • PDF

Neural-Net Based Nonlinear Adaptive Control for AUV

  • Li, Ji-Hong;Lee, Sang-Jeong;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.173.4-173
    • /
    • 2001
  • This paper presents a stable nonlinear adaptive control for AUV(Autonomous Underwater Vehicle) by using neural network. AUV's dynamics are highly nonlinear, and their hydrodynamic coefficients vary with different operational conditions. In this paper, the nonlinear uncertainties of the AUV's dynamics are approximated by using LPNN(Linearly parameterized Neural Network). The presented controller is consist of three parallel terms; linear feedback control, sliding mode control, and adaptive control(LPNN). Lyapunov theory is used to guarantee the stability of tracking errors and neural network´s weights errors. Numerical simulations for nonlinear control of the AUV show the effectiveness of the proposed techniques.

  • PDF

Development of a Parallel-Typed Walking Robot for Breakwater Construction

  • Park, Kun-Woo;Kim, Tae-Sung;Park, Sung-Min;Lee, Min-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.81.1-81
    • /
    • 2002
  • $\textbullet$ This paper presents a study on the development of a walking robot for an armor-stone work of the breakwater construction. The armor-stone work is putting stones about 0.3 ∼ 2m3 on the surface of the breakwater to prevent it from waving. $\textbullet$ This work has been done manually, and its process plan is uncertain by effects of the weather, wave and tide of sea. Therefore the constructional cost is considered to be wasteful $\textbullet$ Working in underwater as well as on land for human workers causes the accident and caisson disease, so it is necessary to replace the process to be mechanized. $\textbullet$ The basic requirements of the robot for mechanizing are as follows : 1) To have a large...

  • PDF

Disturbance countermeasurement of depth control system using adaptive notch filter (적응노치필터를 이용한 심도제어시스템 외란처리)

  • 김윤호;윤형식;임재환;이석필;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.86-89
    • /
    • 1992
  • One of the most difficult problems in depth control for underwater vehicle is the effect of seaway disturbance. One component of the seaway forces is of large magnitude with a relatively narrow-band, first order component. The other component is generaly of somewhat smaller magnitude, second order component. Since the magnitude of the first order component is generally much greater than the compensating force that can be generating by the planes, it is undesirable for the controller to generate a control command. In this paper, we disigned adaptive notch filtering system using filter bank structure. Energies of each band-passed signal are obtained by MA(Moving Average) method and compared to produce center frequency. By adapting this parameter to notch filter, 1st order seaway disturbance can be removed, which lead to the improvement of automatic depth control system.

  • PDF

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

자율무인잠수정 운항기술 발전 동향

  • Seo, Ju-No;Kim, Do-Wan;Lee, Ho-Jae
    • ICROS
    • /
    • v.17 no.2
    • /
    • pp.36-46
    • /
    • 2011
  • 자율무인잠수정(Autonomous Underwater Vehicle, AUV)은 미국을 중심으로 1980년대부터 다양한 수중관련 기술의 발전과, 민군의 사용분야가 증가되면서 급속한 발전의 진전을 보았다. 특히, 과학기술의 발전과 군의 전투개념 변화로 요구되는 무기체계도 급속히 변화되면서 자율무인잠수정이 핵심무기체계로 부상하게 되었다. 군에서 효율적인 전장 관리와 사회의 인명 중시 경향은 무기체계를 유인시스템으로 전환시키고 있다. 자율무인잠수정은 심해저 자원탐사, 해양조사 등 민수분야뿐만 아니라 해군의 정보전, 기뢰전, 그리고 대잠전과 같은 성분 작전에서 핵심적 역할을 수행하게 되었다. 본 기고에서 1994년부터 자율무인잠수정 종합발전 계획을 수립하여 개발하고 있는 미 해군 운용개념을 분석하고 분석된 결과를 기초로 하여 미래 우리 해군에서 자율무인잠수정의 개발 및 운용을 위하여 필요한 핵심 기술을 자율제어, 센서 및 신호처리, 진수 및 hgl수. 수중항법, 수중통신, 그리고 에너지 등으로 구분하고 각각에 대하여 기술발전 동향을 고찰하고 기술개발을 제안하였다.

Optimal Design of Quadrilateral Typed-Overboarding Mechanism for Drop/Lift Automation of Towed Object (예인체의 투하 및 인양 자동화를 위한 사변형 Overboarding Mechanism의 최적설계)

  • Kang, Seok Jeong;Chung, Won Jee;Park, Seong Hak;Choi, Jong Kap;Kim, Hyo Gon;Lee, Jun Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • A crane is typically used as a means to lift and load equipment or materials. A surface vessel uses a towed object for underwater activity. Such a mechanism for dropping and lifting of equipment is necessary, and is called an overboarding unit. The present study is focused on the overboarding unit used for a crane structure. This paper deals with new overboarding mechanism design and GA-based $MATLAB^{(R)}$ optimization. By using a quadrilateral link mechanism, it is possible to set the constraint function for optimizing the GA method. The optimization with $MATLAB^{(R)}$ is followed by the $SolidWorks^{(R)}$ simulation and verification. When applying the proposed mechanism, the operator is expected to have a big advantage in safety and efficiency of operations. Furthermore, the technology developed in this study will be helpful in similar circumstances and in the proposed mechanism.