• Title/Summary/Keyword: Underwater Propulsion System

Search Result 52, Processing Time 0.018 seconds

GUI-based integrated monitoring system for small sized fuel cell ship (소형 연료전지 선박을 위한 GUI 기반의 통합 모니터링 시스템)

  • Lee, Hunseok;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2235-2242
    • /
    • 2016
  • The electric power system based on fuel cell is applied in various forms to the ship and offshore plants. In particular, a research on the hybrid power system of the fuel cell combined with battery in connection topology has been researched actively. Fuel cell-based hybrid ship has not been carried out research, it is not carried out research in the integrated monitoring system. In this paper, we developed an integrated monitoring system to increase the convenience and stability for the hybrid fuel-cell ship operator. Research into integrated monitoring system based on GUI (Graphic User Interface), in consideration of the stability of the user convenience and ship operations, and developed communication and hardwired signal with the main equipment of the ship, to see in realtime state of the ship. The collected ship operation data is stored and it can be seen after the ship operating.

Study on Cavitation Noise Predictions for an Elliptic Wing (타원형 날개에 대한 공동소음 예측 연구)

  • Jeong, Seung-Jin;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Park, Il-Ryong;Seol, Han-Shin;Kim, Min-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.757-764
    • /
    • 2019
  • Depressurization occurs around underwater objects moving at high speeds. This causes cavitation nuclei to expand, resulting in cavitation. Cavitation is accompanied by an increase in noise and vibration at the site, particularly in the case of thrusters, and this has a detrimental ef ect on propulsion performance. Therefore, predicting cavitation is necessary. In this study, an analytical method for cavitation noise is developed and applied to an elliptic wing. First, computational fluid dynamics are performed to obtain information about the flow fields around the wing. Then, through the cavitation nuclei density function, number of cavitation nuclei is calculated using the initial radius of the nuclei and nuclei are randomly placed in the upstream with large pressure drop around the wing tip. Bubble dynamics are then applied to each nucleus using a Lagrangian approach for noise analysis and to determine cavitation behavior. Cavitation noise is identified as having the characteristics of broadband noise. Verification of analytical method is performed by comparing experimental results derived from the large cavitation tunnel at the Korea Research Institute of Ships & Ocean Engineering.