• 제목/요약/키워드: Underwater Communications

Search Result 157, Processing Time 0.025 seconds

Development of a Gateway System Between Underwater and Land Network and Real-Sea performance Test (수중-육상 네트워크 연계용 게이트웨이 부이시스템 개발 및 실 해역 성능 검증)

  • Lee, Jeong-Hee;Park, Jong-Won;Park, Jin-Yeong;Seo, Su-Jin;Lim, Young-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1200-1207
    • /
    • 2015
  • A gateway buoy system connects a underwater network to a terrestrial network, which enables to efficiently monitor the underwater network on a land station. In this paper, we introduce an implemented gateway buoy system which relays gathered data from multiple underwater nodes to a land station in a real time. The gateway buoy hardware system is composed of a underwater acoustic modem system, a radio frequency modem system, and a gateway operating system. in additional, we have implemented a land operating program and a land monitoring program for gateway system and states of underwater network, respectively. We also perform real-sea experiments to verify the performance of the gateway buoy system which real-time monitors underwater network states and gateway system states.

Research trends of biomimetic covert underwater acoustic communication (생체모방 은밀 수중 음향 통신 연구 동향)

  • Seol, Seunghwan;Lee, Hojun;Kim, Yongcheol;Kim, Wanjin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.227-234
    • /
    • 2022
  • Covert Underwater Communication (CUC) signals should not be detected by other unintended users. Similar to the method used in Radio Frequency (RF), covert communication technique sending information underwater is designed in consideration of the characteristics of Low Probability of Detection (LPD) and Low Probability of Intercept (LPI). These conventional methods, however, are difficult to be used in the underwater communications because of the narrow frequency bandwidth. Unlike the conventional methods of reducing transmission power or increasing the modulation bandwidth, a method of mimicking the acoustic signal of an underwater mammal is being studied. The biomimetic underwater acoustic communication mainly mimics the click or whistle sound produced by dolphin or whale. This paper investigates biomimetic communication method and introduces research trends to understand the potential for the development of such biomimetic covert underwater acoustic communication and future research areas.

Performance Evaluation of the Complex-Coefficient Adaptive Equalizer Using the Hilbert Transform

  • Park, Kyu-Chil;Yoon, Jong Rak
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • In underwater acoustic communication, the transmitted signals are severely influenced by the reflections from both the sea surface and the sea bottom. As very large reflection signals from these boundaries cause an inter-symbol interference (ISI) effect, the communication quality worsens. A channel estimation-based equalizer is usually adopted to compensate for the reflected signals under the acoustic communication channel. In this study, a feed-forward equalizer (FFE) with the least mean squares (LMS) algorithm was applied to a quadrature phase-shift keying (QPSK) transmission system. Two different types of equalizers were adopted in the QPSK system, namely a real-coefficient equalizer and a complex-coefficient equalizer. The performance of the complex-coefficient equalizer was better than that of two real-coefficient equalizers. Therefore, a Hilbert transform was applied to the real-coefficient binary phase-shift keying (BPSK) system to obtain a complex-coefficient BPSK system. Consequently, we obtained better results than those of a real-coefficient equalizer.

Underwater Channel Analysis and Transmission Method Research via Coded OFDM (수중채널 분석과 Coded OFDM을 통한 전송방법 연구)

  • Jeon, Hyeong-Won;Lee, Su-Je;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.573-581
    • /
    • 2011
  • The underwater channel is known to offer poor communications channel. The channel medium is highly absorptive and the transmission bandwidth is limited. In addition, the channel is highly frequency selective; the degree of selectiveness depends on a detailed geometry of the channel. Furthermore, the response changes over time as the channel conditions affecting the response such as water temperature, sea surface wind and salinity are time-varying. The transceiver design to deal with the frequency and time selective channel, therefore, becomes very challenging. It has been known that deep fading at certain specific sub-carriers are detrimental to OFDM systems. To mitigate this negative effect, the proposed coded OFDM system employs an LDPC code based modulation. In this paper, we aim 1) to provide a detailed underwater channel model; 2) to design a robust LDPC coded OFDM system; 3) to test the proposed system under a variety of channel conditions enabled by the channel model.

Effect of Text Transmission Performance on Delay Spread by Water Surface Fluctuation in Underwater Multipath Channel (수중 다중경로 채널에서 수면변동에 의한 지연확산이 텍스트 전송성능에 미치는 영향)

  • Park, Ji-Hyun;Kim, Jong-Wook;Yoon, Jong-Rak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, a water tank experiment using Binary Frequency Shift Keying (BFSK) method for text transmission performance by water surface fluctuation is conducted. Water surface fluctuation and delay spread which affect the channel coherence bandwidth is a limiting factor in underwater acoustic communication. The amplitude fluctuation and delay spread the smooth surface and fluctuation surface, were identified. The effective delay spread of both cases are 5ms, 4ms corresponding to the coherence bandwidth of 200Hz, 250Hz, respectively. The bit error rate of BFSK modulated text transmission is about $10^{-4}$ in less than 200bps in smooth surface but less than 250bps in fluctuation surface. Therefore, this experiment shows that the water surface fluctuation is important factor determining the performance of the underwater acoustic transmission.

Development of Underwater Acoustic Micro Modem for Real-Time Monitoring of Underwater Environment and Ecosystem (수중 환경 및 생태 실시간 모니터링을 위한 초소형 수중 음향통신 모뎀 개발)

  • Jeon, Jun-Ho;Park, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.97-108
    • /
    • 2011
  • Systems for underwater environment monitoring and natural resources can be considered as a part of digital convergence where real-time data transmission is possible with the help of underwater wireless sensor network (UWSN). One of key technologies required for the deployment of the systems is underwater acoustic micro modem. In this work, we design and implement an acoustic modem equipped with a commercial omnidirectional transducer. We also make experiments at the northern Han river for the verification of the developed modem. According to the experiments, the modem supports the working distance of 250 m and the data rate of 200 bps with a negligible bit error rate. It is expected that the acoustic modem can be used for various applications based on UWSN in a near future.

Performance Analysis of the Spatial Correlation for Underwater Channel Environments (수중채널 환경에서 센서 간의 간격에 의한 수신 신호의 상관 특성 분석)

  • Ko, Hak-Lim;Lee, Seung-Goo;Kim, Min-Sang;Cho, Dae-Young;Kim, Kil-Yong;Park, Byeong-Hoon;Park, Jong-Won;Lim, Yong-Gon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.107-113
    • /
    • 2012
  • In this paper, we have analyzed the performance of space diversity technologies using experimental data in order to analyze the usability of space diversity techniques in underwater channel environments. After analyzing the experimental data we found out that high diversity gain should not be expected when using a stationary transmitter with a stationary receivers in swallow underwater channel. And we also find out that the distance between sensors should be at least 8 wavelengths apart to take advantage of diversity gain in underwater moving channel environments.

Slotted ALOHA with Variable Slot Length for Underwater Acoustic Systems (수중 통신 시스템을 위한 가변 길이를 갖는 Slotted ALOHA)

  • Lee, Junman;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.104-106
    • /
    • 2016
  • In this letter, we consider a random access scheme for underwater acoustic network, in which a slotted ALOHA with variable slot length is designed to enhance the random access performance for the nodes with the varying propagation delay.

Snapping shrimp noise detection and mitigation for underwater acoustic orthogonal frequency division multiple communication using multilayer frequency

  • Ahn, Jongmin;Lee, Hojun;Kim, Yongcheol;Chung, Jeahak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.258-269
    • /
    • 2020
  • This paper proposes Snapping Shrimp Noise (SSN) detection and corrupted Orthogonal Frequency Division Multiplexing (OFDM) reconstruction methods to increase Bit Error Rate (BER) performance when OFDM transmitted signal is corrupted by impulsive SSNs in underwater acoustic communications. The proposed detection method utilizes multilayer wavelet packet decomposition for detecting impulsive and irregularly concentrated and SSN energy in specific frequency bands of SSN, and the proposed reconstruction scheme uses iterative decision directed-subcarrier reconstruction to recover corrupted OFDM signals using multiple carrier characteristics. Computer simulations were executed to show receiver operating characteristics curve for the detection performance and BER for the reconstruction. The practical ocean experiment of SAVEX 15 demonstrated that the proposed method exhibits a better detection performance compared with conventional detection method and improves BER by 250% and 1230% for uncoded and coded data, respectively, compared with the conventional reconstruction scheme.