• Title/Summary/Keyword: Understory

Search Result 213, Processing Time 0.016 seconds

Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources (디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석)

  • Ko, Chi-Ung;Yim, Jong-Su;Kim, Dong-Geun;Kang, Jin-Taek
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.245-256
    • /
    • 2021
  • This study was conducted to identify the applicability of a LiDAR sensor to forest resources inventories by comparing data on a tree's position, height, and DBH obtained by the sensor with those by existing forest inventory methods, for the tree species of Criptomeria japonica in Jeolmul forest in Jeju, South Korea. To this end, a backpack personal LiDAR (Greenvalley International, Model D50) was employed. To facilitate the process of the data collection, patterns of collecting the data by the sensor were divided into seven ones, considering the density of sample plots and the work efficiency. Then, the accuracy of estimating the variables of each tree was assessed. The amount of time spent on acquiring and processing the data by each method was compared to evaluate the efficiency. The findings showed that the rate of detecting standing trees by the LiDAR was 100%. Also, the high statistical accuracy was observed in both Pattern 5 (DBH: RMSE 1.07 cm, Bias -0.79 cm, Height: RMSE 0.95 m, Bias -3.2 m), and Pattern 7 (DBH: RMSE 1.18 cm, Bias -0.82 cm, Height: RMSE 1.13 m, Bias -2.62 m), compared to the results drawn in the typical inventory manner. Concerning the time issue, 115 to 135 minutes per 1ha were taken to process the data by utilizing the LiDAR, while 375 to 1,115 spent in the existing way, proving the higher efficiency of the device. It can thus be concluded that using a backpack personal LiDAR helps increase efficiency in conducting a forest resources inventory in an planted coniferous forest with understory vegetation, implying a need for further research in a variety of forests.

Effect of thinning ratio on the forest environment and fruiting of ectomycorrhizal mushrooms in a Pinus densiflora stand (소나무림에서 간벌률이 산림 내 환경과 외생균근성 버섯 발생에 미치는 영향)

  • Yong-Woo Park;Jin-Gun Kim;Hwayong Lee
    • Journal of Mushroom
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • To investigate the effect of thinning intensity on environmental factors and ectomycorrhizal mushroom fruiting in forest ecosystems, we studied canopy closure, throughfall, soil temperature, soil moisture, light response of understory vegetation, and ectomycorrhizal mushroom fruiting in a 10-year-old pine forest after 34%, 45%, and 60% thinning. Canopy closure was significantly higher in the 34% treatment and control plots, ranging from 80-85% in April. However, in November, all thinning treatment plots showed a decrease of approximately 5-10% compared with the control plot. The 60% treatment plot had over 200 mm of additional throughfall compared with the control plot, and monthly throughfall was significantly higher by more than 100 mm in October. The soil temperature in each treatment plot increased significantly by up to 1℃ or more compared with the control plot as the thinning rate increased. The soil moisture increased by more than 5% in the thinning treatment plots during rainfall, particularly in the 34% treatment plot, where the rate of moisture decrease was slower. The photosynthetic rate of major tree species (excluding Pinus densiflora)was highest in Quercus mongolica, with a rate of 7 µmolCO2·m-2·s-1. At a lightintensity of 800 μmol·m-2·s-1, Q. mongolica showed the highest photosynthetic level of 6 ± 0.3 μmolCO2·m-2·s-1 in the 45% treatment. The photosynthetic rate of Fraxinus sieboldiana and Styrax japonicus increased as the thinning intensity increased. The Shannon-Wiener index of mycorrhizal mushrooms did not significantly differ among treatments, but the fresh weight of mushrooms was approximately 360-840 g higher in the 34% and 45% treatments than in the control. Additionally, the fresh weight of fungi in the 60% treatment was 860 g less than that in the control. There were more individuals of Amanita citrina in the control than in the thinning treatment, while Suillus bovinus numbers increased by more than 10 times in the 34% thinning treatment compared with the control.

Modeling the Effects of Forest Management Scenarios on Aboveground Biomass and Wood Production: A Study in Mt. Gariwang, South Korea (산림경영활동에 따른 수종별 지상부생물량 및 목재생산량 변화 모델링: 가리왕산 모델숲을 대상으로)

  • Wonhee Cho;Wontaek Lim;Won Il Choi;Hee Moon Yang;Dongwook W. Ko
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.173-187
    • /
    • 2023
  • The forest protection policies implemented in South Korea have resulted in the significant accumulation of forest. Moreover, the associated public interest has also been closely evaluated. As forests mature, there arises a need for forest management (FM) practices, such as thinning and harvesting. It is therefore essential to perform a scientific analysis of the long-term effects of FM. In this study, conducted in Mt. Gariwang, the effect of FM on forest succession and wood production (WP) were evaluated based on changes in aboveground biomass (AGB) using the LANDIS-II model. The FM consists of three scenarios (Selection, Shelterwood, and Two-stories), characterized based on the harvest intensity, frequency, and period. The model was applied to changes in the forest over 200 years. All scenarios show that the total AGB decreased immediately after thinning and harvesting. However, AGB recovery time differed among scenarios, with recovery to preharvest level occurring from 15 to 50 years after harvest; further, after 200 years, harvested forests had a greater total AGB than forests without FMs In particular, the changes in AGB of each species was different depending on its shade tolerance. The AGB of currently dominant shade-intolerant and mid-tolerant species decreased dramatically after harvesting. However, shade-tolerant species, dominant in the understory, continued to grow but were not harvested due to their small size. The cumulative WP for each scenario was estimated at 545.6, 141.6, and 299.9 tons/ha in Selection, Shelterwood, and Two-stories, respectively. The composition of WP differed according to harvest intensity and period. Most WP originated from shade-intolerant and mid-tolerant species in the early period. Later, most WP was from shade-tolerant species, which became dominant. The modeling approach used in this study is capable of analyzing the long-term effects of FM on changes in forests and WP. This study can contribute to decision making to guide FM methods for a variety of purposes, including WP and controlling forest composition and structure.