• Title/Summary/Keyword: Underground temperature

Search Result 614, Processing Time 0.023 seconds

Analysis of temperature distribution per length in highway tunnel (공용중인 고속도로 터널내 연장별 온도 조사 분석)

  • Hong, Seung-Ho;Lee, Kyung-Ha;Kim, Nag-Young;Yun, Kyong-Ku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • This paper analyzed characteristic of temperature change as well as bottom of tunnel with thermometer according to tunnel length and region during one year. And it measured temperature distribution near tunnel portal. In the paper it was known that tunnel entrance and exit have different characteristic temperature distribution in accordiance with bottom of tunnel per tunnel length. Temperature of tunnel changed from tunnel exit to fifty meter and distribution of tunnel temperature was established uniform regardless of tunnel length. But temperature distribution of tunnel changed in tunnel entrance differ from tunnel exit in the location of one hundred twenty five meter and one hundred fifty meter. Cold air inflowed from tunnel entrance have influenced with the location of one hundred twenty five meter and one hundred fifty meter.

  • PDF

A Study on Thermal Shock, Thermal Expansion and Thermal Cracking of Rocks under High Temperature (고온하에서 암석의 열충격, 열팽창 및 열파괴에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.22-40
    • /
    • 1995
  • Thermomechanical characteristics of rocks such as thermal shock, thermal expansion, thermal cracking were experimentally investigaed using Iksan granite, Cheonan tonalite and Chung-ju dolomite to obtain the basic data for proper design and Chung-ju dolomite to obtain the basic data for proper design and stability analysis of underground structures subjected to temperature changes. The effect of thermal shock did not appear when the heating speed was under 3$^{\circ}C$/min. and there existed little difference between multi-staged cyclic heating and single-cycled heating. Thermal expansion of rocks was affected by mineral composition, crack porosity and the degree of thermal craking. In quartz-beraring multimineralic rocks such as Iksan granite and Cheonan tonalite, the thermal expansion coefficient increaseed continuously with temperature rise, but that of Chung-ju dolomite which was a monomineralic rock showed a constant value for the temperature above 250$^{\circ}C$, Chung-ju dolomite yielded the lowest critical threshold temperature(Tc) of 100$^{\circ}C$ and unstable thermal cracking was initiated above the new threshold temperature(Tc')of 300$^{\circ}C$. Above Tc' thermal cracks grew but they were not interconnected. Iksan granite showed closing of microcracks to the temperature of 100$^{\circ}C$, then expanded linearly to Tc of 200$^{\circ}C$. Above Tc, thermal cracking was initiated and progressed rapidly and almost all the grain boundaries were cracked at 600$^{\circ}C$. Cheonan tonalite also showed similar behavior to iksan granite except that Tc was 350$^{\circ}C$ and that thermal cracks propagated more rapidly. Thermal expansions calculated by Turner's equation were found to be valid in predicting the thermal expansion and cracking behavior of rocks.

  • PDF

Geothermal Effects on the Underground Water Conveyance Pipe System from Han River (한강수계 광역상수도 원수관의 지열 영향 조사)

  • Cho, Yong;Park, Jin-Hoon;Park, Tae Jin;Kim, Youngjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.171.2-171.2
    • /
    • 2010
  • Geothermal effects on the underground water conveyance pipe system have been investigated through the multiregional water supply system from Paldang water intake station. To make an investigation of raw water thermal energy, temperature sensors are installed the surface of the pipes of metropolitan area water supply system. In 2009 winter and early spring seasons, the monthly averaged temperatures at Paldang 2 intake stations are $1.94^{\circ}C$ in February, $4.96^{\circ}C$ in March, and $10.56^{\circ}C$ in April. After the transfer in 26.0 km distance of tunnel and buried pipe, the raw water temperatures are raised to $3.13^{\circ}C$, $6.04^{\circ}C$, and $11.39^{\circ}C$ respectively. As the temperature difference between the raw water and the air reduces, the temperature increasement is reduced by $1.19^{\circ}C$ in Feb., $1.08^{\circ}C$ in Mar., and $0.83^{\circ}C$ in Apr. Since the flowrate is over 1,150,000 $m^3$/day, it is estimated that the water exchanges a huge amount of heat over 1.0 Tcal a day with the ground.

  • PDF

A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring) (전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템)

  • 남석현;이수길;홍진영;김정년;정성환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

Prediction of the Fire Behavior According to the Fire Load in an Underground Life Space (화재하중에 따른 지하생활공간의 화재성상 예측)

  • Chae, Han-Sik;Suk, Chang-Mok;Kim, Ie-Sung;Lee, Ji-Hee;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.51-59
    • /
    • 2007
  • The purpose of this study is analyzing the fire behavior according to the fire load for G underground shopping mall located in Daegu city. when predict fire behavior, fire load and ventilation coefficient are important factor who dominate fire temperature or fire continuance time. Therefore, size of unit room, opening size and inflammable investigated on the field. Fire load calculated using unit calorific value by each material of inflammable that investigate. And reduction model experimented fire load about 6 models with variable. Fire behavior analyzed by heat flows of inside space that temperature rise and temperature change by time of fire source.

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling I : Spalling Analysis (박리를 고려한 지하박스구조물의 화재하중해석 I : 박리해석)

  • Lee, Gye-Hee;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.477-483
    • /
    • 2007
  • In this study, the numerical fire analysis for temperature distribution and spalling behavior of underground concrete box structures that contained lifelines, such as power cables and communication cables. The temperature field of inner space was assumed based on the fire curve with the thermal gradient obtained from CFD analysis. It was assumed that the spalling behaviors of concrete are occurred when the concrete temperature reached the threshold, as dehydration degree. In this case, the elements correspond to spalling parts were removed and the analysis model were updated. Three fire scenarios were analyzed and the results were showed adequate spalling behavior. The bearing capacities of the box structures would be estimated in the companion paper.

Numerical Simulation of the Thermal Environment inside an Opened Tomb (개방된 고분내부의 열 환경 수치모사)

  • Lee, Kum-Bae;Youn, Young-Muk;Jun, Hee-Ho;Park, Jin-Yang;Ko, Seok-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.872-878
    • /
    • 2006
  • In recent years the importance of the preservation of cultural artefacts like ancient tombs has been widely accepted domestically and internationally as the quality of life improves. However not much technical attention has been paid for the facilities and systems to preserve those artefacts. Even the general understanding of the preservatory environment of the underground space as tombs is poor. As a part of the present study, the temperature and relative humidity inside a selected artefact, Shinkwan-ri tomb, have been monitored for a year round by the present author to improve the understanding of the indoor thermal environment, is pursued to provide a predictive tool of numerical modelling of Shinkwan-ri tomb the opened underground space thermal environment. In this study, predictive numerical modelling of Shinkwan-ri tomb using the Computational Fluid Dynamics, calculate the velocity and temperature distribution and offer basic data which are necessary for the best fitted design of tomb air-conditioning device.

  • PDF

A Study on the Characteristics of Heating and Cooling Loads of Standard Chicken Houses in South Korea (국내 표준계사의 냉난방부하 특성 연구)

  • Kwon, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.235-243
    • /
    • 2019
  • In South Korea, millions of poultry have died due to repeated heat waves every year. The purpose of this study is to analyze the characteristics of heating and cooling loads of chicken houses in Korea and to present an effective insulation and ventilation measures to minimize the damage of poultry due to summer heat wave and to save energy in chicken houses in winter. The heating and cooling loads of standard chicken house were calculated. As a result of the calculation of maximum heating load based on the minimum ventilation rate in winter, the outdoor air temperature requiring heating was $6{\sim}7^{\circ}C$ to keep the indoor air temperature of chicken houses as $24^{\circ}C$. The peak cooling load of chicken houses was mostly taken by the heat generated by chickens and the heat gain due to ventilation. The heat gain through building envelopes was as small as neglectable. Most of chicken houses is usually cooled by gigantic forced ventilation in summer in Korea. When the chicken houses are cooled by electric cooling machine such as cooler or air conditioner, it is more effective to keep minimum ventilation rate to reduce the maximum cooling load. To lower the temperature of supplying water to cooling pad, it is recommended to use the underground water below 10 meters from the ground if there is abundant underground water.

An experimental study of smoke extraction efficiency along with ventilation building location in the mad tunnel (도로터널 내 환기소 위치별 방재 효율에 관한 실험적 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Yoon, Chan-Hoon;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • An experimental study was carried out on a reduced scale model tunnel to investigate the efficiency of disaster prevention at underground and ground ventilation equipments for the fire in road tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was manufactured. The vertical shafts that are used in the analysis of efficiency of disaster prevention are the two models that had considered when the real tunnels are designed and the amounts of smoke exhaust are applied the miniature of the real tunnels' smoke exhaust, 560 and $280\;m^3/s$. As the result of analysis, it is the possible the emissions of the entire quantity of CO gas through the vertical shafts. In the ground ventilation equipments, the concentration of CO is discharged 2.23~2,73 ppm smaller than the underground ventilation equipments. And the temperature rise in the ground ventilation equipments is $0.53{\sim}0.94^{\circ}C$ lower than in the underground ventilation equipments because of a cooling effect of the surface of the tunnel wall. As a result of analysis of CO concentration and the temperature rise in the modeling ventilation equipment, the position of ground ventilation equipment is more effective than the underground ventilation equipment in disaster prevention measures.