• Title/Summary/Keyword: Underground power transmission cable

Search Result 182, Processing Time 0.017 seconds

PTC/NTC Properties of EEA/Carbon nanotube and Carbon Black Composites (EEA/탄소나노튜브와 카본블랙 복합체의 PTC/NTC특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Choi, Sung-Hun;Lee, Jae-Hyeoung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.236-237
    • /
    • 2006
  • We have investigated volume resistivity showed by changing the content of Carbon nanotube and carbon black which is the component parts of semiconducting shield in underground power transmission cable. Specimens were made of sheet form with the six of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both $23{\pm}1[^{\circ}C]$ and $90{\pm}1[^{\circ}C]$. The volume resistivity decreased by adding Carbon nanotube and carbon black. Also the volume resistivity had different properties because of PTC/NTC tendencies at between $23[^{\circ}C]$ and $90[^{\circ}C]$. We experimented with electric properties of semiconducting components with fewer Carbon nanotube than carbon black.

  • PDF

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.