• Title/Summary/Keyword: Underground infrastructure

Search Result 252, Processing Time 0.018 seconds

Determination of equivalent elastic modulus of shotcrete-tetragonal lattice girder composite (사변형 격자지보재-숏크리트 합성부재의 등가물성 결정 기법)

  • Kang, Kyung-Nam;Song, Ki-Il;Kim, Sun Gil;Kim, Kyoung Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

Transforming a Buffer Green into an Urban Park as Multi-functional Green Infrastructure - A Case of the Buffer Green of Sinmae Market in Daegu, Korea - (입체적 도시기반시설로서 완충녹지의 공원화 계획 - 대구광역시 신매시장 완충녹지 공원화 계획을 사례로 -)

  • Kim, Miyeun;Min, Byoungwook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.101-112
    • /
    • 2021
  • In Korea, efforts have been made continuously to improve the environment of traditional markets concerning the issues of urban regeneration. In particular, many old cities and traditional markets face a lack of parking spaces. As a solution to this, attempts are being made to prepare underground parking spaces by designing urban planning facilities in three-dimensional ways and utilizing the upper part as a more meaningful space. This study is about the master plan to use the upper green area while creating an underground parking lot at 571 Sinmae-dong, Suseong-gu, Daegu. This green area was defined as a space with dual values, 'defensive green space' that needs to be ecologically protected, and 'active cultural space' where walking flows to the market and various events are concentrated. Three specific design strategies to balance these values were presented. First, to prevent indiscriminate occupation and damage by people and maintain a healthy green environment, securing the maximum amount of undivided green space in the site was suggested. Second, a space layout and a topography and planting patterns that can overcome the morphological characteristics of narrow and long-shaped sites enable the experience of abundant green spaces. Third, providing space to strengthen the connections with nearby urban facilities such as Sinmae Market and Gosan Library can also intensively accommodate cultural activities in various cities. This study has academic significance in providing implications for urban regeneration projects with similar contexts in the future.

Assessment of NATM tunnel lining thickness and its behind state utilizing GPR survey (GPR탐사를 통한 NATM터널(무근)라이닝의 두께 분포 및 배면상태 평가)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.717-733
    • /
    • 2019
  • In this study, lining thickness distribution and its behind state (particularly, its void state) were analyzed using the GPR survey data performed on three currently operating NATM tunnels. Results of GPR analysis showed that void areas were mostly detected between concrete lining and primary support, particularly, near the crown of the tunnels. The lining thickness in the left-hand side of the tunnel was different from that of the right-hand side by 8.6~253.5 mm when measured in transverse direction. It was also found that longitudinal cracks were prevailed in the area lining thickness was sharply changed. Longitudinal thickness distribution at the crown was also studied and tested by performing 3 goodness-of-fit tests in order to find the most suitable thickness distribution. Normal distribution (or similar distribution) fit most suitably to the measured data if the measured average thickness was larger than designed one; Gamma and/or Inverse Gauss distribution fit to the measured data reasonably well if the measured average thickness was less than the designed value of thickness. Since actual lining thickness can be a potential index when assessing the state and safety of the unreinforced NATM tunnel lining, measuring of the lining thickness with GPR survey might be needed rather than assuming the thickness is always constant and same with the designed value.

Development and performance of inorganic thixotropic backfill for shield TBM tail voids (무기질계 가소성 TBM 뒤채움재 개발 및 성능)

  • Lee, Seongwoo;Park, Jinseong;Ryu, Yongsun;Choi, Byounghoon;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • This paper contains experimental study for the development and performance of TBM backfill material with thixotropic properties. The LW backfill material is widely applied to fill the cavity on the back side of the shield TBM excavation, but has disadvantages such as settlement caused by strength reduction, material separation by groundwater, and reduced plasticity. In this paper, laboratory tests and a model test were conducted to assess the performance of inorganic thixotropic backfill material proposed to improve these problems. The results of laboratory tests show that 1 hr-uniaxial compressive strength of ITB was 12 times higher than LW, and the rate of bleeding of 20 hr was 8.3 times lower, and the result of flow table test was more than 27 times higher. This result indicated that the inorganic thixotropic backfill material has superior properties to LW backfill in terms of strength reduction, material separation, and thixotropy. In the model experiment, a model injection device tester was manufactured and the injection performance and filling rate were verified. When material was injected in the water, it was visually checked whether material separation occurred, and it was confirmed that the filling rate was 96% or more. Comparison results with the test of LW and ITB materials was concluded that ITB can reduce the material separation by groundwater and the occurrence of tunnel cavity.

Detection of Steel Ribs in Tunnel GPR Images Based on YOLO Algorithm (YOLO 알고리즘을 활용한 터널 GPR 이미지 내 강지보재 탐지)

  • Bae, Byongkyu;Ahn, Jaehun;Jung, Hyunjun;Yoo, Chang Kyoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.31-37
    • /
    • 2023
  • Since tunnels are built underground, it is impossible to check visually the location and degree of deterioration of steel ribs. Therefore, in tunnel maintenance, GPR images are generally used to detect steel ribs. While research on GPR image analysis employing artificial neural networks has primarily focused on detecting underground pipes and road damage, there have been limited applications for analyzing tunnel GPR data, specifically for steel rib detection, both internationally and domestically. In this study, a one-step object detection algorithm called YOLO, based on a convolutional neural network, was utilized to automate the localization of steel ribs using GPR data. The performance of the algorithm is then analyzed. Two datasets were employed for the analysis. A dataset comprising 512 original images and another dataset consisting of 2,048 augmented images. The omission rate, which represents the ratio of undetected steel ribs to the total number of steel ribs, was 0.38% for the model using the augmented data, whereas the omission rate for the model using only the original data was 7.18%. Thus, from an automation standpoint, it is more practical to employ an augmented dataset.

Performance Test of Wall to Wall Modular Structure Joint for Near-surface Transit (저심도 모듈식 구조체의 벽체간 연결 조인트 성능검증 실험)

  • Lee, Jong Soon;Kim, Hee Sung;Lee, Sung Hyung;Lee, Jun Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • To overcome the weaknesses of viaduct bridges and the non-economic efficiency of underground LRT, the study of near-surface railway systems is in progress. To apply a box structure to the low depth transit, a connection joint to precast modules are very important when applying precast modular structures to replace temporary structures. In this study, wall to wall connections were applied in diverse cases such as rebar connections, guiding structures that were used to fit the verticality of precast walls during construction, and non-reinforcement structures used only for waterstop. Experimental performance verification was carried out for the bending, shear and splitting of the wall to wall connection. Precision of construction joints between wall to wall was identified as a factor that influenced the structural performance of the precast wall. A structure that can serve as a guide during the vertical insertion of a wall is confirmed for the most suitable case, but it will be necessary to modify this structure for detailed cases.

Evaluation of Engineering Properties of Retaining Wall Material Using Fiber Reinforcement (섬유보강재를 이용한 흙막이 벽체 재료의 공학적 특성평가)

  • Lee, Jong-Ho;Lee, Kang-Il;Yu, Nam-Jae;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.243-252
    • /
    • 2019
  • Recently, as the utilization of underground space increases, the demand for underground excavation increases. In this study, the concrete mixture with a new material was used to develop and evaluate the stability of the CS-H wall that can greatly minimize the problems of existing wall and minimize the impact of ground depression and surrounding ground that may occur in the future for excavation of over 30 m deep in urban areas. The fiber reinforcement formulation of steel fibers, synthetic fibers, and glass fibers, along with fine aggregate parts of PS-ball and ferronickel, were mixed. The Mixture ratios were determined by conducting slump test compresive strength test, modulus of elastic test, flexural strength test, splitting tensile strength test and conductivity test. As a result of the test, the steel fiber mixture showed very good results compared to other reference values in all items, and it is considered to be the most suitable for the CS-H wall to be developed.

Dynamic behavior analysis of tunnel structure under gas explosion load (가스폭발하중에 의한 터널 구조물의 동적거동해석)

  • Kim, Young-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.5
    • /
    • pp.413-430
    • /
    • 2011
  • Consideration on the explosion resistant design of infrastructure has increased in the recent years. The explosion load is caused by gas explosion or bomb blast. In this study an analytical model is developed, whereby the tunnel structure is divided in several elements that are schematized as single degree of freedom mass-spring-dashpot systems on gas explosion. Using this simple model a sensitivity analysis has been carried out on tunnel structure design parameters such as explosive peak pressure, duration of the load, thickness of structure, burial depth. Finite element method was used to investigate the dynamic response and plastic zone of a tunnel under gas explosion. And it was found from the comparison of the analysis results that there are slight differences in the response of the intermediate wall between the single degree of freedom mass-spring-dashpot model and FEM.

Behavior of double deck tunnel due to feature change and variation of ground water table (다목적 복층터널의 기능전환과 지하수위 변화에 따른 거동분석)

  • Park, No-Hyeon;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.581-591
    • /
    • 2016
  • Several attempts to construct multi-purpose tunnel for both road and waterway have been made. The multi-purpose tunnel is mainly used as a road tunnel, however it is transferred to waterway to control flood during rainy season. The planning of the multi-purpose tunnel is recognized as cost-effective way of infrastructure construction. In case of the multi-purpose tunnel constructed beneath groundwater table, seasonal fluctuation of groundwater table and repeated flow in the tunnel may cause long-term deterioration of the tunnel system. In this study, the behavior of multi-purpose tunnel in view of groundwater table or flow in the tunnel is investigated using model test and numerical modeling method. The results have shown that rising of groundwater table caused buoyant force to the tunnel and the fluctuation of rainwater in the tunnel generated loosening of surrounding ground. It is recommended to evaluate the effect of the long-term water pressure variation in the design of a multi-purpose tunnel.

An experimental study on behavior of tunnel in jointed rock mass (절리암반내 터널라이닝 거동에 관한 실험적 연구)

  • Oh, Young-Seok;Park, Yong-Won;Yoon, Hyo-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.315-326
    • /
    • 2004
  • This study performed model tunnel tests in order to investigate the influence of discontinuity condition of rock mass to the stress and deformation of tunnel lining. Tests were carried out changing the direction of main joint and lateral earth pressure condition of rock mass. Test results revealed that the axial force in tunnel lining showed a tendency of decrease with the presence of joints. It decreased much with the increase of lateral earth pressure coefficient. And, it also showed that the location or maximum displacement and maximum stress in lining were changed by the direction of main joint of rock mass. The tangential stress and normal stress showed the difference above the maximum twenty times as lateral earth pressure coefficient due to effect of joints increased. Also, these tendencies of concentration of tensile stress in tunnel lining were confirmed by elastic theory.

  • PDF