• 제목/요약/키워드: Underground drainage

검색결과 154건 처리시간 0.033초

수리실험을 이용한 지하유입시설 유입구 형상에 따른 수리학적 특성 분석 (Study of Hydraulic Characteristics with the Shape of the Intake of an Underground Inflow Facility using Hydraulic Experiments)

  • 성호제;박인환;이동섭
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.119-126
    • /
    • 2018
  • In recent years, as flood damage caused by heavy rains increased, the great-depth tunnel using urban underground space is emerging as a countermeasure of urban inundation. The great-depth tunnel is used to reduce urban inundation by using the underground space. The drainage efficiency of great-depth tunnel depends on the intake design, which leads to increase discharge into the underground space. The spiral intake and the tangential intake are commonly used for the inlet facility. The spiral intake creates a vortex flow along the drop shaft and reduces an energy of the flow by the wall friction. In the tangential intake, flow simply falls down into the drop shaft, and the design is simple to construct compared to the spiral intake. In the case of the spiral intake, the water level at the drop shaft entrance is risen due to the chocking induced by the flowrate increase. The drainage efficiency of the tangential intake decreases because the flow is not sufficiently accelerated under low flow conditions. Therefore, to compensate disadvantages of the previously suggested intake design, the multi-stage intake was developed which can stably withdraw water even under a low flow rate below the design flow rate. The hydraulic characteristics in the multi-stage intake were analyzed by changing the flow rate to compare the drainage performance according to the intake design. From the measurements, the drainage efficiency was improved in both the low and high flow rate conditions when the multi-stage inlet was employed.

지하철 직류 급전시스템의 표유전류 실태조사 (On-site Investigation of the Stray Current Condition in DC-Powered Subway System)

  • 하윤철;배정효;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.373-375
    • /
    • 2003
  • The subway, a typical electrified transit, is operated by the 1500 V DC-powered system with the overhead positive feeder and the rails negative return. This return path would bring about considerable stray current circuits, that is, from the bottom of rails to sell and then to the station ground, unless the rail-to-soil resistance is sufficiently high. The stray current can cause electrolytic corrosion of subway metallic structures and adjacent underground utilities. In this paper, we reports on-site investigation of the stray current condition, especially influenced by drainage method. The drainage method including both forced drainage and polarized drainage, extensively adopted as a countermeasure for electrolytic corrosion of underground pipelines, was found out to exert a harmful influence upon rail components as well as the pipelines.

  • PDF

직류전기철도 전식대책 실증실험(1) 누설전류 배류시스템 (Field Test of Mitigation Methods for Stray Currents from DC Electric Railroad(1) Stray Current Drainage System)

  • 하윤철;배정효;하태현;이현구;김대경;최정희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.220-222
    • /
    • 2007
  • With the wide spread of direct current (DC) electric railroads in Korea, the stray currents or leakage currents from negative return rails become a pending problem to the safety of nearby underground infrastructures. The most widely used mitigation method for this interference is the stray current drainage method, which connects the underground metallic structures to the rails with diodes (polarized drainage) or thyristor (forced drainage). Although this method inherently possesses some drawbacks, its cost effectiveness and efficiency to protect the interfered structures has been the main reason for the wide adoption. In this paper, we show the field test results for the application of stray current drainage system to a city gas pipeline paralleling a depot area of a metropolitan rapid transit system. The process for optimal positioning is briefly illustrated. The effectiveness of constant voltage, constant current, and constant potential drainage schemes was also described.

  • PDF

한반도 기후 변화에 따른 수해 및 빗물 저류터널(Flood Drainage Tunnel) 건설의 세계 동향 검토 연구

  • 최재화;지왕률
    • 자연, 터널 그리고 지하공간
    • /
    • 제14권2호
    • /
    • pp.31-37
    • /
    • 2012
  • In the circumstances being continuous the unusual weather in the world, the city of Seoul has been devastating flood damage in July 2011, because of the heavy rainfalls. Along with expensive repairs to property, thousands of flood victims occurred; it is difficult to estimate the direct and indirect economic damages in city. Recently, as a part of the flood protecting measures, there are being discussed about the deep underground flood drainage tunnel, underground regulating reservoirs, permeable pavement, infiltration facility, river improvements, diversion channel, sewer pipe and ditch improvement and so on. Therefore, it is useful to make the plan of flood protecting measures more and more cost-effective and rational methods by considering the similar flood measures and constructions in the mega cities like Seoul.

  • PDF

The Field Test of a Mitigation Method from DC Subwaysystem for Underground Pipeline

  • Bae, Jeong-Hyo;Ha, Tae-Hyun;Ha, Yoon-Cheol;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.308-310
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP are described.

Effects of the borehole drainage for roof aquifer on local stress in underground mining

  • Shao, Jianli;Zhang, Qi;Zhang, Wenquan;Wang, Zaiyong;Wu, Xintao
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.479-490
    • /
    • 2021
  • Pre-drainage of groundwater in the roof aquifer by boreholes is the main method for prevention of roof water disaster, and the drop in the water level during the drainage leads to the variation of the local stress in the overlying strata. Based on a multitude of boreholes for groundwater drainage from aquifer above the 1303 mining face of Longyun Coal Mine, theoretical analysis and numerical simulation are used to investigate the local stress variation in the process of borehole drainage. The results show that due to the drop in the water level of the roof aquifer during the drainage, the stress around the borehole gradually evolved. From the center of the borehole to the outside, a stress-relaxed zone, a stress-elevated zone, and a stress-recovered zone are sequentially formed. Along with the expansion of drainage influence, the stress peak in the stress-elevated zone also moves to the outside. When the radius of influence develops to the maximum, the stress peak position no longer moves outward. When the coal mining face advances to the drainage influence range, the abutment pressure in front of the mining face is superimposed with the high local stress around the borehole, which increases the risk of stress concentration. The present study provides a reference for the stress concentration caused by borehole drainage, which can be potentially utilized in the optimal arrangement of drainage boreholes in underground mining.

지하시설물용 센서 네트워크를 위한 에너지 획득 장치 (Energy Harvesting System for Underground Facility Sensor)

  • 권영민;이형수
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.136-137
    • /
    • 2009
  • In this paper, we introduce UFSN(Underground Facility Sensor Network) in order to build the intelligent management system for the underground facility and drainage in convergence with ubiquitous technologies and propose the energy harvesting system for UFSN.

  • PDF

도시철도 친환경 지하터널 배수형식의 효율적인 유지관리 방안 검토 (A study on efficient management of the drainages of underground tunnels for environmentally friendly urban railway systems)

  • 백종명;홍종헌;김한배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1982-1990
    • /
    • 2010
  • 서울지하철 1~4호선 구간에서 부분적으로 도시터널공법을 채택하여 건설한 노선은 2~4호선으로서, 2호선 구간은 2기 지하철 건설시 시공된 신정기지 인입선 도림천~까치산역 구간 터널을 제외하고는 전체가 재래식 공법(ASSM)을 3~4호선 터널은 지형적인 여건 및 토압의 영향에 따라서 ASSM공법과 NATM공법을 병행하여 건설하였으며, 지하수 처리 형식은 지반조건과 지형적인 조건, 지하수위 저하에 의한 영향, 장기적인 운전 유지비 등을 감안하여 배수 및 비배수 형식을 적용하여야 하나, 이에 대한 충분한 사전검토 없이 채택하므로서 완전방수(비배수) 형식은 건설시에도 시공성이 떨어지고 기술적으로도 불합리한 요소를 지닌 채 설치되었으며, 부분방수(배수)형식은 배수관 기능저하, 배수구배 부적정 등으로 인해서 터널 구조물의 유지관리에서 누수와 수압에 의한 라이닝 콘크리트 균열, 박리 현상이 지속적으로 발생하여 보수 및 보강공사에 많은 비용이 소요되고 또한 터널 안정성 확보에 어려움이 있는 실정이다. 그러므로 터널 방수 형식에 대한 설계 및 시공 개념을 고찰함으로서 기술적인 문제점 등을 파악해서 유지관리의 개선 방향을 제안하고자 한다.

  • PDF

터널 라이닝에 작용하는 합리적인 잔류수압 적용방안 검토 (A study for application plan of rational residual water pressure on the tunnel linings)

  • 정국영;김지엽;김지훈;문훈기
    • 한국터널지하공간학회 논문집
    • /
    • 제13권6호
    • /
    • pp.463-499
    • /
    • 2011
  • 지중에 건설되는 터널은 대부분 지하수위 하부에 위치하므로 지하수 처리문제는 터널의 장기운영에 있어 매우 중요하다. 배수형 터널의 경우 수리기능이 원활하면 라이닝에 수압이 작용하지 않으나 장기 운영으로 인해 배수시스템의 열화가 진행되면서 라이닝 배면에 잔류수압이 작용할 수 있다. 본 연구에서는 배수재 및 배수공 폐색 조건에 따른 터널에 작용하는 수압분포를 ICFEP프로그램을 활용하여 수치해석적으로 고찰하고 현재 적용중인 잔류수압과의 비교 분석을 통해 라이닝에 작용하는 합리적인 잔류수압 적용 방안을 검토하였다.

직류전기철도의 누설전류 간섭대책(1) 국내 현황 (Mitigation of Stray Current Interference from DC Electric Railroad(1) Domestic Conditions)

  • 하윤철;배정효;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.270-272
    • /
    • 2005
  • With the wide spread of direct current (DC) electric railroads in Korea, the stray currents from negative return rails become a pending problem to the safety of nearby underground infrastructures, such as gas pipelines, water distribution lines, heat pipelines, POF cables, etc. The mitigation of such interference, however, is mainly dependent on stray current drainage bond methods, which connect the underground metallic structures to the negative feeder cables attached to the rails with diodes (polarized drainage) or thyristors (forced drainage). Despite some merits of these methods, they increase the total amount of stray currents from rails and cause other interference problems. In this paper, we summarize the domestic conditions of stray current interference and describe a conceptual design of other mitigation methods for such interference.

  • PDF