• 제목/요약/키워드: Underground coal mine

검색결과 66건 처리시간 0.038초

Analysis of the failure mechanism and support technology for the Dongtan deep coal roadway

  • Chen, Miao;Yang, Sheng-Qi;Zhang, Yuan-Chao;Zang, Chuan-Wei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.401-420
    • /
    • 2016
  • The stability of deep coal roadways with large sections and thick top coal is a typical challenge in many coal mines in China. The innovative Universal Discrete Element Code (UDEC) trigon block is adopted to create a numerical model based on a case study at the Dongtan coal mine in China to better understand the failure mechanism and stability control mechanism of this kind of roadway. The failure process of an unsupported roadway is simulated, and the results suggest that the deformation of the roof is more serious than that of the sides and floor, especially in the center of the roof. The radial stress that is released is more intense than the tangential stress, while a large zone of relaxation appears around the roadway. The failure process begins from partial failure at roadway corners, and then propagates deeper into the roof and sides, finally resulting in large deformation in the roadway. A combined support system is proposed to support roadways based on an analysis of the simulation results. The numerical simulation and field monitoring suggest that the availability of this support method is feasible both in theory and practice, which can provide helpful references for research on the failure mechanisms and scientific support designing of engineering in deep coal mines.

Ground support performance in deep underground mine with large anisotropic deformation using calibrated numerical simulation (case of mine-H)

  • Hu, Bo;Sharifzadeh, Mostafa;Feng, Xia-Ting;Talebi, Roo;Lou, Jin-Fu
    • Geomechanics and Engineering
    • /
    • 제21권6호
    • /
    • pp.551-564
    • /
    • 2020
  • High-stress and complex geological conditions impose great challenges to maintain excavation stability during deep underground mining. In this research, large anisotropic deformation and its management by support system at a deep underground mine in Western Australia were simulated through three-dimensional finite-difference model. The ubiquitous-joint model was used and calibrated in FLAC3D to reproduce the deformation and failure characteristics of the excavation based on the field monitoring results. After modeling verification, the roles of mining depth also the intercept angle between excavation axis and foliation orientation on the deformation and damage were studied. Based on the results, quantitative relationships between key factors and damage classifications were presented, which can be used as an engineering tool. Subsequently, the performance of support system installation sequences was simulated and compared at four different scenarios. The results show that, first surface support and then reinforcement installation can obtain a better controlling effect. Finally, the influence of bolt spacing and ring spacing were also discussed. The outcomes obtained in this research may play a meaningful reference for facing the challenges in thin-bedded or foliated ground conditions.

블록이론에 의한 불연속성 암반내 터널의 안정성 해석 (Stability Analysis of Discontinuous Rock by the Block Theory)

  • 양형식
    • 터널과지하공간
    • /
    • 제1권
    • /
    • pp.66-74
    • /
    • 1991
  • The block theory with stereographic projection was applied and analyzed on the tunnel section of Samcheok Coal Mine. The results were as follows ; 1) Prevail orientations of discontinuity of sandstone around the main driftway of Samcheok Coal Mine were $(327^{\circ},\;44^{\circ}),\;(13^{\circ},\;24^{\circ}),\;(204^{\circ},\;65^{\circ})$ and $(225^{\circ},\;77^{\circ})$ in dip and dip direction, respectively. 2) Movable blocks of the site were 0110, 0111, 1110(roof), 0100, 0110, 1110(right wall) and 0001, 1001, 1011(left wall). Because of the direction of tunnel, blocks of the left wall was safe. thus key blocks were those of the roof and the right wall. Maximum height of key block was larger than the width of the tunnel but 2m of the yielded zone is expected in general for 5m width tunnel. 3) It is shown that block theory is applicable to large cavern in hard rock analysis.

  • PDF

구리원석광산에서의 Elemental Carbon (EC) 노출에 관한 사례연구 (A Case Study of Exposure to Elemental Carbon (EC) in an Underground Copper Ore Mine)

  • 이수길;김정희;김성수
    • 한국환경과학회지
    • /
    • 제26권9호
    • /
    • pp.1013-1021
    • /
    • 2017
  • Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.

심부 석탄광산의 환기시스템 최적화 연구 (A Study on Optimum Ventilation System in the Deep Coal Mine)

  • 권준욱;김선명;김윤광;장윤호
    • 터널과지하공간
    • /
    • 제25권2호
    • /
    • pp.186-198
    • /
    • 2015
  • 본 연구에서는 적정 소요환기량의 확보를 통한 갱내 환경의 최적화를 위한 기초연구로 갱내 소요환기량을 추정하였다. 채굴의 심부화 및 운행갱도의 증가로 인한 온도상승으로 작업환경이 점차 악화되는 광산에서 작업환경의 개선을 위하여 J광업소를 대상으로 환기평가를 하였으며 갱내의 환기효율을 증가시키기 위하여 갱도의 길이에 따른 온도에 대한 효과를 수치 해석하였다. 연구결과 J광업소의 소요환기량은 $17,831m^3/min$으로 산출되었으며, 실제 총 입기량은 $16,474m^3/min$로 환기량이 $1,357m^3/min$ 부족한 것으로 나타났다. 개발된 프로그램을 이용하여 J 광업소의 두 가지 개발모델에 관하여 온도 예측을 하였으며 온도계산의 기본 인자인 환기량 예측을 위해서 수치해석 프로그램인 VnetPC를 사용하였다. 실험 결과 첫 번째 개발모델인 -425ML을 전체 개발할 경우의 C 생산부 주운반갱도 9X의 온도는 $29.30^{\circ}C$로 예측되었으며 두 번째 모델인, A 생산부를 제외한 일부 지역만 개발할 경우의 온도는 $27.45^{\circ}C$로 예측되었다.

연약 암반내 터널 보갱법 설계를 위한 2차 응력 및 변위 계측에 관한 연구 (On Monitoring of Induced Stress and Displacement for Support Design around Tunnel in Weak Rock)

  • 임한욱;이상은
    • 터널과지하공간
    • /
    • 제4권3호
    • /
    • pp.297-304
    • /
    • 1994
  • This study aimed at analysis of induced stress and deformation behavior in rock mass around coal seams of Sam Chuck coal mine. For this study Vibrating Wire Stressmeters and Multi-point Borehole Extensometers were installed in the area of coal shale near coal seams. Induced stress and displacement in this area were coutinuously increased for 6 days from the begining of measurement, and then converged. But induced stress and displacement occurred when there were another openings by tunnelling and mining. The value of final induced stress was 21.8kgf/$\textrm{cm}^2$, displacement of rod extensometer was 1.3 mm at arch. Especially, over 1 mm of displacement between E2 and E3 in rod extensometer was measured.

  • PDF

광산 통기 네트워크 연구 (A Study on Mine Ventilation Network)

  • 김수홍;김윤광;김선명;장윤호
    • 터널과지하공간
    • /
    • 제27권4호
    • /
    • pp.217-229
    • /
    • 2017
  • 최근 국내의 탄광들은 오랜 가행으로 작업심도가 깊어지고 운행갱도가 길어지면서 지열에 의한 온도증가로 인하여 작업환경이 더욱 악화되고 있다. 갱내의 작업환경 개선을 위하여 A광업소를 대상으로 통기평가를 하였으며 갱내의 통기 효율을 증가시키기 위하여 통기전용수갱을 건설할 시에 온도 예측 프로그램인 CLIMSIM을 이용하여 온도에 대한 효과를 수치 해석하였다. A광업소의 필요 공기량은 $6,152m^3/min$으로 산출되었으며, 실제 총 입기량은 $4,710m^3/min$로 공기량이 $1,442m^3/min$ 부족한 것으로 나타났다. -395 ML에서 -488 ML까지 93 m 길이의 통기전용수갱을 건설하였을 시에 -488 ML 작업장의 온도가 현재보다 약 $3^{\circ}C$가 감소되었다. 인공신경망을 이용하여 -523 ML 개발시의 $CO_2$ 용출을 예측한 결과 채탄량과 탄층 두께가 증가할수록 $CO_2$의 발생량은 증가하였다. $CO_2$ 발생량에 가장 큰 영향을 주는 인자는 탄층 두께와 채탄량으로 나타났으며 통기량이 증가할수록 이산화탄소의 농도 저하에 큰 영향을 미치는 것으로 나타났다.

갱도의 심도 정보만을 고려한 지반침하위험도 평가법 개발 (Development of Subsidence Hazard Estimation Method Based on the Depth of Gangway)

  • 정용복;송원경;강상수
    • 터널과지하공간
    • /
    • 제18권4호
    • /
    • pp.272-279
    • /
    • 2008
  • 본 연구에서는 폐광산으로 인한 광산재해 중 기간 및 일반 시설물이나 인명의 피해를 초래하는 지반침하의 예측 및 평가를 위하여 국내에서 비교적 용이하게 확보할 수 있는 정보인 갱도심도를 사용하여 단순하면서도 국내 지질 및 채굴조건에 적합한 지반침하위험도 평가법을 개발하였다. 개발된 방법을 가상의 규칙적인 채굴적과 실제 침하현장에 대하여 적용한 결과 기존의 영향함수법에 의한 결과 및 현장 침하 사례와 유사한 결과를 얻었다. 따라서 본 연구에서 개발한 평가법은 복잡한 지질구조와 불규칙한 채굴적으로 대표되는 국내광산의 지반침하위험도평가 및 예측에 효과적으로 사용할 수 있을 것을 판단된다.

The gob-side entry retaining with the high-water filling material in Xin'an Coal Mine

  • Li, Tan;Chen, Guangbo;Qin, Zhongcheng;Li, Qinghai;Cao, Bin;Liu, Yongle
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.541-552
    • /
    • 2020
  • With the increasing tension of current coal resources and the increasing depth of coal mining, the gob-side entry retaining technology has become a preferred coal mining method in underground coal mines. Among them, the technology of the gob-side entry retaining with the high-water filling material can not only improve the recovery rate of coal resources, but also reduce the amount of roadway excavation. In this paper, based on the characteristics of the high-water filling material, the technological process of gob-side entry retaining with the high-water filling material is introduced. The early and late stress states of the filling body formed by the high-water filling materials are analyzed and studied. Taking the 8th floor No.3 working face of Xin'an coal mine as engineering background, the stress and displacement of surrounding rock of roadway with different filling body width are analyzed through the FLAC3D numerical simulation software. As the filling body width increases, the supporting ability of the filling body increases and the deformation of the surrounding rock decreases. According to the theoretical calculation and numerical simulation of the filling body width, the filling body width is finally determined to be 3.5m. Through the field observation, the deformation of the surrounding rock of the roadway is within the reasonable range. It is concluded that the gob-side entry retaining with the high-water filling material can control the deformation of the surrounding rock, which provides a reference for gob-side entry retaining technology with similar geological conditions.