• 제목/요약/키워드: Underground Spent Fuel Storage

검색결과 6건 처리시간 0.027초

MANAGING SPENT NUCLEAR FUEL FROM NONPROLIFERATION, SECURITY AND ENVIRONMENTAL PERSPECTIVES

  • Choi, Jor-Shan
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.231-236
    • /
    • 2010
  • The growth in global energy demand and the increased recognition of the impacts of carbon dioxide emissions from fossil fuel plants have aroused a renewed interest on nuclear energy. Many countries are looking afresh at building more nuclear power stations to deal with the twin problems of global warming and the need for more generating capacity. Many in the nuclear community are also anticipating a significant growth of new nuclear generation in the coming decades. If there is a nuclear renaissance, will the expansion of nuclear power be compatible with global non-proliferation and security? or will it add to the environmental burden from the large inventory of spent nuclear fuel already produced in existing nuclear power reactors? We learn from past peaceful nuclear activities that significant concerns associated with nuclear proliferation and spent-fuel management have resulted in a decrease in public acceptance for nuclear power in many countries. The terrorist attack in the United States (US) on September 11, 2001 also raised concern for security and worry that nuclear materials may fall into the wrong hands. As we increase the use of nuclear power, we must simultaneously reduce the proliferation, security and environmental risks in managing spent-fuel below where they are today.

PLUTONIUM MANAGEMENT OPTIONS: LIABILITY OR RESOURCE

  • Bairiot, Hubert
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.9-20
    • /
    • 2008
  • Since plutonium accounts for 40-50% of the power produced by uranium fuels, spent fuel contains only residual plutonium. Management of this plutonium is one of the aspects influencing the choice of a fuel cycle back-end option: reprocessing, direct disposal or wait-and-see. Different grades and qualities of plutonium exist depending from their specific generation conditions; all are valuable fissile material. Safeguard authorities watch the inventories of civil plutonium, but access to those data is restricted. Independent evaluations have led to an estimated current inventory of 220t plutonium in total (spent fuel, separated civil plutonium and military plutonium). If used as MOX fuel, it would be sufficient to feed all the PWRs and BWRs worldwide during 7 years or to deploy a FBR park corresponding to 150% of today' s installed nuclear capacity worldwide, which could then be exploited for centuries with the current stockpile of depleted and spent uranium. The energy potential of plutonium deteriorates with storage time of spent fuel and of separated plutonium, due to the decay of $^{241}Pu$, the best fissile isotope, into americium, a neutron absorber. The loss of fissile value of plutonium is more pronounced for usage in LWRs than in FBR. However, keeping the current plutonium inventory for an expected future deployment of FBRs is counterproductive. Recycling plutonium reduce the required volume for final disposal in an underground repository and the cost of final disposal. However, the benefits of utilizing an energy resource and of reducing final disposal liabilities are not the only aspects that determine the choice of a back-end policy.

사용후핵연료 최종처분장 건설과정에서의 굴착손상영역(EDZ)의 현장평가 방법 및 시공품질관리 체계에 관한 사례검토 (A Review of In-Situ Characterization and Quality Control of EDZ During Construction of Final Disposal Facility for Spent Nuclear Fuel)

  • 김형목;남명진;박의섭
    • 터널과지하공간
    • /
    • 제32권2호
    • /
    • pp.107-119
    • /
    • 2022
  • 사용후핵연료 최종처분장 건설 과정에서 발생하는 굴착손상영역(EDZ)은 처분시설의 역학적 안정성 및 처분공 간격 설정 등의 설계요소로서 고려해야 할 뿐만 아니라 영역 내 투수특성은 폐쇄 후 지하수 유입량 변화에 따른 처분용기 부식 속도 및 핵종유출 등에도 막대한 영향을 미치게 된다. 따라서, 처분시설 및 관련 지하연구시설(URL)의 건설과정에서는 EDZ의 발생양상을 현장에서 정확하게 파악하고 미리 규정된 요건을 만족할 수 있도록 철저하게 관리할 수 있어야 한다. 이 논문에서는 핀란드 온칼로 시설에서의 EDZ 관련 연구사례를 검토하고 처분시설 굴착과정에서의 EDZ의 현장평가방법 및 시공품질관리 체계에 대해 검토하였다. EDZ 현장 평가를 위해서는 굴찰 갱도 주변의 교란을 유발하는 시추공 굴착이 불필요한 GPR 탐사가 가장 적합함과 온칼로 처분시설의 EDZ는 바닥부에서 두드러지게 발생하여 0~70 cm의 두께로 발생함을 확인하였다. 이들 결과는 국내 처분환경에 적합한 EDZ 관련 규제요건 개발에 유용한 정보를 제공할 수 있을 것으로 기대된다.

방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구 (A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste)

  • 문현구;주광수
    • 터널과지하공간
    • /
    • 제4권2호
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

Influence of Microbial Activity on the Long-Term Alteration of Compacted Bentonite/Metal Chip Blocks

  • Lee, Seung Yeop;Lee, Jae-Kwang;Kwon, Jang-Soon
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.469-477
    • /
    • 2021
  • Safe storage of spent nuclear fuel in deep underground repositories necessitates an understanding of the long-term alteration of metal canisters and buffer materials. A small-scale laboratory alteration test was performed on metal (Cu or Fe) chips embedded in compacted bentonite blocks placed in anaerobic water for 1 year. Lactate, sulfate, and bacteria were separately added to the water to promote biochemical reactions in the system. The bentonite blocks immersed in the water were dismantled after 1 year, showing that their alteration was insignificant. However, the Cu chip exhibited some microscopic etch pits on its surface, wherein a slight sulfur component was detected. Overall, the Fe chip was more corroded than the Cu chip under the same conditions. The secondary phase of the Fe chip was locally found as carbonate materials, such as siderite (FeCO3) and calcite ((Ca, Fe)CO3). These secondary products can imply that the local carbonate occurrence on the Fe chip may be initiated and developed by an evolution (alteration) of bentonite and a diffusive provision of biogenic CO2 gas. These laboratory scale results suggest that the actual long-term alteration of metal canisters/bentonite blocks in the engineered barrier could be possible by microbial activities.

TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사 (Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach)

  • 박도현
    • 터널과지하공간
    • /
    • 제34권2호
    • /
    • pp.127-142
    • /
    • 2024
  • 수치해석 기법의 강건성은 다양한 모델링 조건에서 계산 성능이 유지되는 것을 의미하며, 새로운 해석기법 또는 수치코드는 벤치마크 테스트를 통해 강건성이 평가될 필요가 있다. TOUGH-FLAC 모델링 기법은 국내외적으로 이산화탄소 지중저장, 사용후핵연료 지층처분, 지열 개발 등 다양한 분야에 적용되었으며, 실험 계측자료, 다른 수치코드들과의 결과 비교를 통해 모델링 유효성이 분석되었다. 본 연구에서는 해석해를 갖는 열-수리-역학적 복합거동 문제를 토대로 TOUGH-FLAC 기법의 벤치마크 테스트를 수행하였다. 적용된 해석해는 완전히 포화된 지반에 점열원 작용 시 주변매질의 온도, 간극수압, 역학적 거동과 관계되며, 해석해와 수치모사 결과를 비교하여 TOUGH-FLAC 기법의 강건성이 평가되었다. 또한, 열-수리-역학 해석의 연계항, 유체 상변화, 시간증분이 복합거동 계산에 미치는 영향을 조사하였다.