• Title/Summary/Keyword: Underground Sound

Search Result 57, Processing Time 0.032 seconds

Remote Localization of an Underground Acoustic Source by a Passive Sonar System

  • Jarng, Soon-Suck
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.138-148
    • /
    • 1998
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the way of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. A new hybrid method has been developed for estimating the origin of the underground acoustic source by coupling both methods. The Nelder-Meade simplex search algorithm is then used to numerically estimate the position of the source in those methods. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is in some cases less than 6m for a search area of radius 250m.

  • PDF

Development of New Methods for Position Estimation of Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Position estimation of underground acoustic source origin using a passive SONAR system (수동형 SONAR 시스템을 사용한 지하 진원지의 추정)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.103-108
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

New method development for position estimation of underground acoustic source using a passive SONAR system

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu;Park, Heun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-152
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the way of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. For each method the sound localization is carried out in three dimensions underground. The minimum distance between the true and estimated origins of the source is 28 m for a search area of radius 250m.

  • PDF

New Acoustic Imaging Method Development for Localization of an Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.10-17
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Position Estimation of an Underground Acoustic Source by a Passive Sonar System

  • Jarng, Soon-Suck
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.133-136
    • /
    • 1998
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and locates the origin of an underground hammering sound using an array of six hydrophones located about 100m underground. Two different methods for the sound localization will be presented, a time-delay method and a power-attenuation method. In the time-delay method, the cross correlation of the signals received from the array of sensor sis used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure f the distances of the source from the sensors.

  • PDF

Fuzzy Logic Based Sound Source Localization System Using Sound Strength in the Underground Parking Lot (지하주차장에서 음의 세기를 이용한 퍼지로직 기반 음원 위치추정 시스템)

  • Choi, Chang Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.434-439
    • /
    • 2013
  • It is very difficult to monitor the blind spots that are not recognized by traditional surveillance camera (CCTV) systems, and the surveillance efficiencies are very low though many accidents/events can be solved by the systems. In this paper, the fuzzy logic based sound source localization system using sound strength in the underground parking lot is suggested and the performance of the system is analyzed in order to enhance the stabilization and the accuracy of the localization algorithm in the suggested system. It is confirmed that the localization stabilization of the localization algorithm (SLA_fuzzy) using the fuzzy logic in the suggested system is 4 times higher than that of the conventional localization algorithm (SLA). In addition to this, the localization accuracy of the SLA_fuzzy in the suggested system is 29% higher than that of the SLA.

Development of Station Safety Management System (승강장 안전 관리 시스템 개발)

  • Ku, Ja-Yl
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.41-46
    • /
    • 2007
  • In this paper, we have proposed Station Safety Management System to protect station accident. we establish a sensor part near an underground rail. If a passenger approaches an underground rail, at first, lamp is shining and warning sound is ringing. nevertheless he approaches end of underground rail, At the same time, lamp is shining, warning sound is ringing, this information transfer server and train using wireless LAN. We makes this system using low cost in comparison with another system.

Data Visualization of Site-Specific Underground Sounds

  • Tae-Eun, Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • This study delves into the subtle sounds emanating from beneath the earth's surface to unveil hidden messages and the movements of life. It transforms these acoustic phenomena into digital data and reimagines them as visual elements. By employing Sismophone microphones and utilizing the FFT function in p5.js, it analyzes the intricate frequency components of subterranean sounds and translates them into various visual elements, including 3D geometric shapes, flowing lines, and moving particles. This project is grounded in the sounds recorded in diverse 'spaces of death,' ranging from the tombs of Joseon Dynasty officials to abandoned areas in modern cities. We leverage the power of sound to transcend space and time, conveying the concealed narratives and messages of forgotten places .Through the visualization of these sounds, this research blurs the boundaries between 'death' and 'life,' 'past' and 'present,' aiming to explore new forms of artistic expression and broaden perceptions through the sensory connection between sound and vision.

Certifying the Characteristics of Artificial Explosion Sounds Traveled through Underground Bedrock Medium (지하 암반 매질을 통과한 인공발파음 특성 규명)

  • Yoon, Sang-Hoon;Bae, Myung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.844-850
    • /
    • 2008
  • This paper stated the proposed algorithm to certify the characteristics of artificial explosion sounds traveled through underground bedrock medium. Artificial explosion that travel through underground bedrock had an attenuation within high frequency bands in increase of a distance with multiple transmission paths phenomenon and inhomogeneity of geological status. In this paper, explosion experiment was made in underground tunnel to verify efficiency of proposed algorithm. The could certify the characteristics of artificial explosion sounds as extracted and numerically quantified the characterized parameter with collected sound sample that traveled through underground bedrock channel.