• Title/Summary/Keyword: Underground Lifelines

Search Result 6, Processing Time 0.021 seconds

Introduction to Image Processing Technology for Precise Positioning of Underground Buried Lifelines (영상정보 기반 지하매설관 정밀 위치조사 기술 소개)

  • Ryu, Byunghyun;Cheon, Jangwoo;Lee, Chulhee;Lee, Impyeong;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.51-57
    • /
    • 2021
  • Underground lifelines such as water supply/sewer pipe, power cable and gas pipe are indispensable facilities to the life of urban society. These lifelines have been constructed long time ago and buried positioning information is not precisely recorded. Moreover, they have been concentrated on the narrow area and are complicatedly entangled in 3-dimension. In the fourth industrial revolution, a 3-dimensional visualization for underground lifelines is strongly required, and a database (D/B) with precise positioning information should be preceded. In this study, image processing technology for precise positioning of underground buried lifelines is introduced, which is able to build the database more accurately, efficiently and practically.

A Study on the Design of Digital Twin System and Required Function for Underground Lifelines (지하공동구 디지털 트윈 체계 및 요구기능 설계에 관한 연구)

  • Jeong, Min-Woo;Lee, Hee-Seok;Shin, Dong-Bin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.248-258
    • /
    • 2021
  • 24-hour monitoring is required to maintain the city's lifeline function in the underground facility for public utilities. And it is necessary to develop technology to exchange the shortage of human resources. It is difficult to reflect the specificity of underground space management in general management methods. This study proposes underground facility for public utilities digital twin system requirements. The concept of space is divided into physical space and virtual space, and the physical space constitutes the type and layout of the sensor that is the basis for the construction of the multimodal image sensor system, and the virtual space constitutes the system architecture. It also suggested system functions according to the task. It will be effective in preventing disasters and maintaining the lifeline function of the city through the digital twins.

Hazard-Consistent Ground Displacement Estimation for Seismic Input of Underground Utility Tunnels in Korea (국내 재해도에 상응하는 공동구의 지반변위 산정)

  • Kim, Dae-Hwan;Lim, Youngwoo;Chung, Yon-Ha;Lee, Hyerin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.7-23
    • /
    • 2021
  • Underground utility tunnels, which contribute to supply of electricity, communication, water and heat, are critical lifelines of an urban area. In case service is discontinued or functional disruption happens, there will be a huge socio-economic impact. For the improved seismic design and evaluation of underground structures, this study proposes a ground displacement measure when the site is subjected to a scenario earthquake based on hazard-consistent source spectra and site amplification/attenuation. This measure provides a rational estimation of ground displacement and can be an alternative to existing response displacement methods.

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling I : Spalling Analysis (박리를 고려한 지하박스구조물의 화재하중해석 I : 박리해석)

  • Lee, Gye-Hee;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.477-483
    • /
    • 2007
  • In this study, the numerical fire analysis for temperature distribution and spalling behavior of underground concrete box structures that contained lifelines, such as power cables and communication cables. The temperature field of inner space was assumed based on the fire curve with the thermal gradient obtained from CFD analysis. It was assumed that the spalling behaviors of concrete are occurred when the concrete temperature reached the threshold, as dehydration degree. In this case, the elements correspond to spalling parts were removed and the analysis model were updated. Three fire scenarios were analyzed and the results were showed adequate spalling behavior. The bearing capacities of the box structures would be estimated in the companion paper.

Research on Improving Quality Management for Underground Space Integration Map - Focusing on pipe-type underground facilities - (지하공간통합지도 품질관리 개선방안 연구 - 관로형 지하시설물을 중심으로 -)

  • Bae, Sang-Keun;Kim, Sang-Min;Yoo, Eun-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.221-235
    • /
    • 2020
  • The development and utilization of underground spaces are increasing as the use of land based on ground surface became limited due to rapid urbanization triggered by population growth and industrialization. Despite its merit of efficient use of limited land and space, it may contribute to occurrence of various disasters such as sinkholes and damage to underground facilities. After the sinkholes formed and occurred across the country in 2014, there has been an effort to establish Underground Space Integration Map containing 15 types of underground information. Still, there is an increasing demand to improve the quality of underground information stemmed from continuation of such events including the rupture of the hot water pipe in Goyang-si and the fire in the KT site in Ahyeon-dong, Seoul. Hereby, with the aim to improve the quality of Underground Space Integration Map, this study analyzes quality standards, regulations, and guidelines related to spatial data to improve quality inspection standards and methods included in the production rules for the Underground Space Integration Map. In particular, it suggests improvement plan for data quality management for pipe-type underground facilities, known as lifelines, which are essential part of daily life of the citizens, and the largest cause for accidents according to 15 types of underground information managed through the Underground Space Integration Map.

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.