• Title/Summary/Keyword: Underexpanded flow

Search Result 31, Processing Time 1 seconds

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF

Quantitative Visualization of Supersonic Jet Flows (초음속 제트 유동의 정량적 가시화)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • Sonic and supersonic jets include many complicated flow physics associated with shock waves, shear layers, vortices as well as strong interactions among them, and have a variety of engineering applications. Much has been learned from the previous researches on the sonic and supersonic jets but quantitative assessment of these jets is still uneasy due to the high velocity of flow, compressibility effects, and sometimes flow unsteadiness. In the present study, the sonic jets issuing from a convergent nozzle were measured by PIV and Schlieren optical techniques. Particle Image Velocimetry (PIV) with Olive oil particles of $1{\mu}m$ was employed to obtain the velocity field of the jets, and the black-white and color Schlieren images were obtained using Xe ramp. A color filter of Blue-Green-Red has been designed for the color Schlieren and obtained from an Ink jet printer. In experiments, two types of sonic nozzles were used at different operating pressure ratios(NPR). The obtained images clearly showed the major features of the jets such as Mach disk, barrel shock waves, jet boundaries, etc.

Research about Thermoacoustic Resonance Ignition (열음향 공진 점화에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Bae, Jong Yeol;Lee, Jin Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • The unique phenomenon that jet flow kinetic energy is converted to thermal energy through thermoacoustic resonance can be applied for the multiple ignition of liquid rocket engines. The present article includes the basic principle and theory behind the phenomenon as well as major outstanding, previous research works. The thermoacoustic phenomenon is affected by underexpanded jet flow characteristics from a nozzle, geometries of a nozzle and a resonance tube, and chemical composition of jet flow. The paper concludes with discussion what should be considered as crucial issues for the future research on the development of a multiple ignition system of liquid rocket engines.

Numerical Study on k-$\omega$ Turbulence Models for Supersonic Impinging Jet Flow Field (초음속 충돌 제트 운동에 대한 k-$\omega$ 난류모델의 적용)

  • Kim E.;Park S. H.;Kwon J. H.;Kim S. I.;Park S. O.;Lee K. S.;Hong S. G.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.30-35
    • /
    • 2004
  • A numerical study of underexpanded jet and impingement on a wall mounted at various distances from the nozzle exit is presented. The 3-dimensional Wavier-Stokes equations and κ-ω turbulence equations are solved. The grids are constructed as overlapped grid systems to examine the distance effect. The DADI method is applied to obtain steady-state solutions. To avoid numerical instability such as the carbuncle phenomena that sometimes accompany approximate Riemann solver, the HLLE+ scheme is employed for the inviscid flux at the cell interfaces. A goal of this work is to apply a number of two-equation turbulence models based on the w equation to the impinging jet problem.

Numerical Study on $\kappa-\omega$ Turbulence Models for Supersonic Impinging Jet Flow Field (초음속 충돌 제트 유동에 대한 $\kappa-\omega$ 난류모델의 적용)

  • Kim E.;Park S. H.;Kwon J. H.;Kim S. I.;Park S. O.;Lee K. S.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.139-145
    • /
    • 2004
  • A numerical study of underexpanded jet and impingement on a wall mounted at various distances from the nozzle exit is presented. The 3-dimensional Navier-Stokes equations and $\kappa-\omega$ turbulence equations are solved. The grids are constructed as overlapped grid systems to examine the distance effect. The DADI method is applied to obtain steady-state solutions. To avoid numerical instability such as the carbuncle that sometimes accompany approximate Riemann solver, the HLLE+ scheme is employed for the inviscid flux at the cell interfaces. A goal of this work is to apply a number of two-equation turbulence models based on the $\omega$ equation to the impinging jet problem.

  • PDF

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

A Study of the Control of Plume-Induced Flow over a Missile Afterbody (Missile Afterbody에서 Plume-Induced Flow의 제어에 관한 연구)

  • ;Young-Ki Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.45-48
    • /
    • 2003
  • The plume interference is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The base knowledge of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics in plume-freestream flow field. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation for Simple, Rounded, Porous-extension test model configurations. The present study simulates highly underexpanded exhaust plume effect on missile body at the transoni $c^ersonic speeds. In order to investigate the plume-induced separation phenomenon, Simple, Rounded and Porous-extension plate are attacked to the missile afterbody. The computational result shows that the rounded afterbody and the porous-extension wall attached at the missile base can alleviate the plume-induced shock wave and separation phenomenon and improve the control of the missile body.dy.

  • PDF

An Experimental Study of Supersonic Dual Coaxial Free Jet

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Lee, Byeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2107-2115
    • /
    • 2003
  • A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.

Effect of Outer Stagnation Pressure on Jet Structure in Supersonic Coaxial Jet (초음속 동축제트의 구조에 대한 외부 정체압력의 영향)

  • Kim, Myoung-Jong;Woo, Sang-Woo;Lee, Byeong-Eun;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.664-669
    • /
    • 2001
  • The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with $40^{\circ}$ converging angle with the variation of outer nozzle stagnation pressures are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressures of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream.

  • PDF

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.