• Title/Summary/Keyword: Undercooling

Search Result 34, Processing Time 0.023 seconds

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

The Effect of Sr Addition and Mold Preheating Temperature on the Solidification and Microstructure of Al-7wt%Si-0.3wt%Mg Alloy (Al-7wt%Si-0.3wt%Mg 합금의 응고 및 미세조직에 미치는 Sr 첨가와 금형예열온도의 영향)

  • Kwon, Il-Soo;Kim, Kyoung-Min;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.608-614
    • /
    • 1997
  • The effect of mold preheating temperature on the microstructure such as grain size, eutectic silicon morphology was investigated for the Al-7wt%Si-0.3wt%Mg alloy. Microstructural variations have been characterized as a function of Sr addition and cooling rate during solidification. Microstructures were correlated with cooling rate, local solidification time and eutectic nucleation temperature, etc. In this study, Sr addition caused increase of local solidification time, undercooling and reduction of eutectic plateau temperature. In logarithmic scale, local solidification time was in inverse proportion to cooling rate. Eutectic nucleation temperature was in inverse proportion to cooling rate of logarithmic scale. Increasing the cooling rate refined dendrite arm spacing and eutectic silicon. Dendrite arm spacing was logarithmically in inverse proportion to cooling rate. Without modifier addition, eutectic silicon was modified at cooling rate of $7^{\circ}C/s$ or higher.

  • PDF

Bulk Amophisation and Decomposition Behavior of Mg-Cu-Y Alloys (Mg-Cu-Y합금의 벌크 비정질화 및 상분해 거동)

  • Kim, S.H.;Kim, D.H.;Lee, J.S.;Park, C.G.
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Amophization and decomposition behaviour in $Mg_{62}Cu_{26}Y_{12}$ alloy prepared by melt spinning method and wedge type metal mold casting method have been investigated by a detailed transmission electron microscopy. Amorphous phase has formed in melt-spun ribbon. In the case of the wedge type specimen, however, the amorphous phase has formed only around the tip area within about 2 mm thickness. The remaining part of the wedge type specimen consists of crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$. The supercooling for crystallization behaviour of the amorphous $Mg_{62}Cu_{26}Y_{12}$ alloy, ${\Delta}T_x$ has been measured to be about 60 K. Such a large undercooling of the crystallization bahaviour enables formation of the amorphous phase in the $Mg_{62}Cu_{26}Y_{12}$ alloy under the cooling rate of $10^{2}K/s$. The amorphous $Mg_{62}Cu_{26}Y_{12}$ has decomposed into crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$ after heat treatment at $170^{\circ}C\;and\;250^{\circ}C$.

  • PDF

Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy (($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Lee, Jae-Chul
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

The Effect of Sr Addition and Holding Time on Microstructure of Al-10.5%Si-2%Cu Secondary Die-casting Alloys (Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 미세조직에 미치는 Sr의 양과 유지시간의 영향 I)

  • Shin, Sang-Soo;Kim, Myung-Yong;Yeom, Gil-Yong
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.161-166
    • /
    • 2010
  • In this examination, the effect of Sr addition and holding time on microstructure of Al-10.5wt%Si-2wt%Cu secondary die-casting alloy was investigated. Degree of undercooling was improved with increasing the Sr content in this alloy. Up to 0.02wt%Sr addition, acicular and lamellar eutectic structure was observed in the microstructure. Meanwhile, the eutectic Si was modified toward the fine fibrous form by increasing Sr content with more than 0.03wt% and holding time of the melt. The well- modified alloys showed decreased eutectic silicon size from 3.25 ${\mu}m$ to less than 0.8 ${\mu}m$. From these results, the optimal strontium content and holding time were identified on the Al-10.5wt%Si-2wt%Cu secondary die-casting alloy.

Experiment investigation on flow characteristics of open natural circulation system

  • Qi, Xiangjie;Zhao, Zichen;Ai, Peng;Chen, Peng;Sun, Zhongning;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1851-1859
    • /
    • 2022
  • Experimental research on flow characteristics of open natural circulation system was performed, to figure out the mechanism of the open natural circulation behaviors. The influence factors, such as the heating power, the inlet subcooled and the level of cooling tank on the flow characteristics of the system were examined. It was shown that within the scope of the experimental conditions, there are five flow types: single-phase stable flow, flash and geyser coexisting unstable flow, flash stable flow, flash unstable flow, and flash and boiling coexisting unstable flow. The geyser flow in flash and geyser coexisting unstable flow is different from classic geysers flow. The flow oscillation period and amplitude of the former are more regular, is a newly discovered flow pattern. By drawing the flow instability boundary diagram and sorting out the flow types, it is found that the two-phase unstable flow is mainly characterized by boiling and flash, which determine the behavior of open natural circulation respectively or jointly. Moreover, compared with full liquid level system, non-full liquid level system is more prone to boiling phenomenon, and the range of heat flux density and undercooling degree corresponding to unstable flow is larger.

Effects of Natural Convection on Macrosegregation of Directionally Solidified Off-Eutectic Composites (공정복합재료의 일방향응고시 용질편석에 미치는 자연대류의 영향)

  • Kim, Gi-Bae;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.123-131
    • /
    • 1995
  • Natural convection in bridgman growth and it's effect on macrosegregation in unidirectionally solidified off-eutectic alloys were examined in this study. AlCu off-eutectic alloys(27.5wt% ~35. 6wt% ) were solidified upward or downward for producing a different natural convection and then Cu concentrations of off-eutectic composites were measured as a function of solidified fraction. Solutal and temperature distributions ahead of the solid/liquid interface were measured on quenched specimen. When hypo-utectic AlCu alloys are directionally solidified with downward growth, considerable macrosegregation occurs due to flow induced by thermal and solutal convection in melt. Soultal convection affects the macrosegregation of hyper-eutectic AlCu alloys more severely than thermal convection. Solute composition at solid/liquid interface of offkutectic composites was eutectic and also temperature was near eutectic point without large undercooling.

  • PDF

Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis (냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가)

  • Lee, Sang-Hwan;Park, Seung-Yeon;Lee, Sang-Mok;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.

Mineralogical Characteristics of Stellerite associated with the Yucheon Granite, Cheongdo, Korea (경북 청도군 유천화강암 내 제올라이트 광물군 스텔러라이트의 산출과 광물학적 특징)

  • Choo, Chang-Oh;Lee, Jin-Kook;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-372
    • /
    • 2008
  • Because stellerite, belonging to the zeolite group, is much less common mineral than any other minerals in Korea, little mineralogical study has been done so far. Stellerite occurs on open surfaces of fractured zones in the Yucheon Granite associated with flowery tourmaline, Chongdo, Gyeongsangbuk-do. Stellerite with $3{\sim}4\;mm$ length and $1{\sim}2\;mm$ width is characterized by an equigranular and euhedral form. Flat and elongated columnar crystals show well developed (010) face. Stellerite shows an intensive alteration process, possibly due to weathering or devitrification, as evidenced by microtextural analysis of Scanning Electron Microscope (SEM). Water loss occurs at $161^{\circ}C$ while dehydroxylation occurs at $467^{\circ}C$ causing decomposition of the structure afterward. From its textural observation, it is concluded that stellerite formed rapidly at small undercooling, precipitated from residual melt during the late stage with relatively constant chemistry.

Analysis of Eutectic Reaction as a Function of Cooling Rate in High Manganese Flake Graphite Cast Irons (고 망간 편상흑연주철에서 냉각속도별 공정반응 분석)

  • Lee, Sang-Hwan;Lee, Hyun-Woo;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.162-170
    • /
    • 2013
  • The effects of Mn content and cooling rate on the eutectic reaction of flake graphite cast irons were studied by a combined analysis of macro/micro-structure and cooling curve data. The correlation between the eutectic reaction parameter and macro/microstructure was systematically investigated. Two sets of chemical compositions with different Mn contents were designed to cast. Three types of molds for cylindrical specimens with different diameters were prepared to analyze the cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_U-T_{E,C}$), which is decreased by increasing the Mn content or increasing the cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$, and D-type graphite is mainly suggested to form for ${\Delta}T_1$ below $0^{\circ}C$. Eutectic reaction time (${\Delta}T$), which is increased by increasing the Mn content and decreased by increasing the cooling rate, is regarded as a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in proportion to the decrease of ${\Delta}T$.