• Title/Summary/Keyword: Under-Expanded Jet

Search Result 55, Processing Time 0.027 seconds

The Influence of the Supply Chamber Configuration on Under-Expanded Swirling Jets (노즐 챔버 형상이 부족팽창 스월제트 유동에 미치는 영향에 관한 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.586-591
    • /
    • 2003
  • The present study addresses experimental results to investigate the effect of the jet supply chamber configuration on the sonic/supersonic swirling jets, as the case study. The experiment is carried out using the convergent nozzle with a various different chamber configurations upstream the nozzle throat, which is composed of four tangential inlet holes for the swirling flows. The jet pressure ratio is varied between 3.0 and 7.0. The sonic/supersonic swirling jet flows are specified by the pitot impact and static pressure measurements and visualized using the Shadowgraph method. The results show that the major structures of the sonic/supersonic swirling jet are strongly influenced by the jet supply chamber.

  • PDF

Effect of Nozzle Geometry on the Near Field Structure of Under Expanded, Dual, Coaxial Jet (노즐 형상이 부족팽창 동축제트 근접 유동장에 미치는 영향)

  • Lee, Kwon-Hee;Toshiake, Setoguchi;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1649-1654
    • /
    • 2004
  • The near field structures of an under-expanded, dual, coaxial, jets issuing from the coaxial nozzles with four different geometries are visualized by using a shadowgraph optical method. Experiments are conducted to investigate the effects of the nozzle-lip thickness, secondary stream thickness, the nozzle pressure ratio and the secondary swirl stream on the characteristics of under-expanded jets. The results show that the presence of secondary annular swirling stream causes the Mach disk to move further downstream and increases its diameter, which decreases with a decrease in the nozzle-lip thickness. The secondary stream thickness has an influence on the location of an annular shock wave.

  • PDF

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.

Numerical Analysis for Under- or Over- Expanded Supersonic Turbulence Jet Flow (초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구)

  • Kim Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.85-89
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit, The waves reflect repeatedly at the center axis and on the sonic surface in the shear layer, and the pressure difference is resolved across these waves interacted with the turbulence mixing layer. In this paper, the axi-symmetric Navier-Stokes equation has been used with two equation $k-{\varepsilon}$ turbulence closure model. The second order TVD scheme with flux limiters, based on the flux vector split by the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. The correction term for the compressible flow and the damping function are used in the turbulence model. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

A study on supersonic jet using Schlieren technique and numerical simulation in low-pressure condition (Schlieren 기법과 수치해석을 이용한 저압 상황의 초음속 제트 유동 연구)

  • Ji, Yun Young;Jang, Dong Kyu;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Research on shock structures of supersonic jet through visualization experiments in low-pressure environment have not been actively conducted. Therefore, in this study, shock waves and supersonic jets were analyzed and compared by numerical analysis and Schlieren technique at low-pressure. Schlieren technique is commonly used to visualize the shock waves generated by density gradient as interferometric methods. Pressure ratio of entrance and ambient was set around 4 to observe moderate under-expanded jet. For validation of experimental and numerical results, the shock structure and frequency were compared. In the case of ST and C nozzle, the results were shown that the difference of shock cell distance was within 10%. The Mach number gradually decreased due to energy reduction, and the error rate was within 7%. D nozzle was not fitted to be observing the shock structure. Because the interface between rarefaction fan and supersonic jet was ambiguous and oscillating phemenoma occurred at end of jet, the supersonic jet in low ambient pressure was observed and analyzed.

A Study on Aerodynamic Characteristics with the Supersonic Nozzle Quantity (초음속노즐 수량 변화에 따른 공기역학적 특성의 연구)

  • Lee, Jong-Hoon;Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.54-58
    • /
    • 2015
  • The objective of this paper is to investigate the flow characteristics of the multi nozzle. The configurations of the single, the 3- and the 6-nozzle were selected under Mach number of 2.5. Under-expanded pressure ratio such as 1.2, 1.6 and 2.0 were selected to elucidate interference of the free jet. The flow visualization was carried out with the Schlieren system and a supersonic cold-flow system. Also, the flow characteristics were studied computationally with the density measurements. Reasonable agreement between experimental and theoric equation has been achieved qualitatively.

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

Characteristics of the Base Pressure in High-Speed Jet Plume (고속제트 플럼에서의 기저압력 특성)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.193-195
    • /
    • 2011
  • An abrupt increase of duct cross-section is frequently encountered in pressure reducing devices, valves of internal combustion engines and in gas pipelines. Supersonic flow in a rectangular duct passing an abrupt increase of cross-section is studied numerically. The behavior of base pressure of the dead-air region at sudden enlargement of the duct is clarified. This investigation concerns the determination of the base pressure, which is independent of the size of the enlarged part. Several flow patterns are identified with different enlargements according to the ratio between the downstream ambient pressure and the upstream reservoir pressure. Base pressure and the resulting shock-structure are highly depending on the size of duct enlargement. For a given duct, base pressure tends to minimum for a particular pressure ratio. In addition, the locations of secondary separation and reattachment points of the jet plume are found with respect to different duct enlargements.

  • PDF

The Self-Induced Oscillations of the Under Expanded Jets Impinging Upon a Cylindrical Body

  • Kim, Heuy-Dong;Hideo Kashimura;Toshiaki Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1448-1456
    • /
    • 2002
  • The present study addresses the flow characteristics involved in the self-induced oscillations of the underexpanded jet impinging upon a cylindrical body. Both experiment and computational analysis are carried out to elucidate the shock motions of the self-induced oscillations and to find the associated major flow factors. The underexpanded sonic jet is made from a nozzle and a cylindrical body is placed downstream to simulate the impinging jet upon an obstacle. The computational analysis using TVD scheme is applied to solve the axisymmetric, unsteady, inviscid governing equations. A Schlieren system is employed to visualize the self-induced oscillations generated in flow field. The data of the shock motions are obtained from a high-speed video system. The detailed characteristics of the Mach disk oscillations and the resulting pressure variations are expatiated using the time dependent data of the Mach disk positions. The mechanisms of the self-induced oscillations are discussed in details based upon the experimental and computational results.

Effect of Sound-Absorbing Materials on the Characteristics of Supersonic Jet Noise (흡음재가 초음속 제트의 소음특성에 미치는 영향)

  • Gwak, Jong-Ho;Kweon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1499-1504
    • /
    • 2004
  • The effects of absorbing materials on the characteristics of supersonic jet noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. In order to investigate the effect of absorbing materials, baffle plates of different materials (metal, grass wool and polyurethane foam) were installed at the exit of the nozzle. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained show that the screech tone amplitude and the overall sound pressure level reduce by using the baffle plates of absorbing materials, compared with the metal baffle plate. It is also found that the characteristics of supersonic jet noise are strongly dependent on the size of baffle plate.

  • PDF