• Title/Summary/Keyword: Unconsolidated sediments

Search Result 42, Processing Time 0.026 seconds

Tracking of the Moryang Fault and It's Characteristics (모량단층의 분포와 특성)

  • Choi, Sung-Ja;Ryoo, Chung-Ryul;Choi, Jin-Hyuck
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.389-397
    • /
    • 2021
  • Moryang Fault is geomorphologically observed as a linear fault valley from Angang through Moryang, Duckhyun and Wondong to Gimhae, and contacts with Yangsan Fault, being obliquely away to the east, at Angang disrict. The fault valley appears a V-shape feature with a width from 100 to 300 m, and has fragmental zones of the fault along the valley on a small scale. Nine fault-outcrop localities were found along the nine-kilometers valley between Daehyun-ri, Gyeongju, and Baenaemi-gogae, Yangdong-ri, Ulsan. The fault strikes the North-North-East to the Northeast and dips to the Northwest with high angles, and reveals it had been undergone predominantly sinistral reverse fault movement sense, left-lateral and right-lateral strike-slip sense in bedrocks. However, after unconsolidated sediments, there was the top-up-to-the-east dextral reverse fault movement.

Liquefaction Hazard Assessment according to Seismic Recurrence Intervals Using Simple Estimating Method in Busan City, Korea (간이평가법을 이용한 지진재현주기별 부산광역시 액상화 재해 평가)

  • Lim, Hyunjee;Jeong, Rae-yoon;Oh, Dongha;Kang, Hyejin;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2020
  • As can be seen in many earthquakes, liquefaction causes differential settlement, which sometimes produces serious damages such as building destruction and ground subsidence. There are many possible active faults near the Busan city and the Yangsan, Dongrae, and Ilgwang faults among them pass through the city. The Busan city is also located within the influence of recent earthquakes, which occurred in the Gyeongju, Pohang, and Kumamoto (Japan). Along the wide fault valleys in the city, the Quaternary unconsolidated alluvial sediments are thickly accumulated, and the reclaimed lands with beach sediments are widely distributed in the coastal area. A large earthquake near or in the Busan city is thus expected to cause major damage due to liquefaction in urban areas. This study conducted an assessment of the liquefaction hazard according to seismic recurrence intervals across the Busan city. As a result, although there are slight differences in degree depending on seismic recurrence intervals, it is predicted that the liquefaction potential is very high in the areas of the Nakdonggang Estuary, Busan Bay, Suyeong Bay, and Songjeong Station. In addition, it is shown that the shorter the seismic recurrence interval, the greater difference the liquefaction potential depending on site periods.

Calculation of Gas Hydrate Saturation Within Unconsolidated Sediments (미고결 퇴적층내 가스하이드레이트 포화도 계산)

  • Kim, Gil-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.102-115
    • /
    • 2012
  • The purpose of this paper is to review several different methods calculating gas hydrate saturations. There are three methods using downhole log data, core data (including pressure core), and seismic velocity data. Archie's equation using electrical resistivity of downhole log data is widely used for saturation calculation. In this case, Archie's parameters should be defined accurately. And the occurrence types of gas hydrate significantly affect to saturation calculation. Thus saturation calculation should be carefully conducted. The methods using chlorinity and pressure core data are directly calculated from core sample. So far, the saturation calculated from pressure core gives accurate and quantitative values. But this method is needed much more time and cost. Thus acquisition of the continuous data with sediment depth is realistically hard. The recent several results show that the saturation calculated from resistivity data is the highest values, while the value calculated from pressure core is the lowest. But this trend is not always absolutely. Thus, to estimate accurate gas hydrate saturation, the values calculated from several methods should be compared.

Analysis of the Correlation between Geological Characteristics and Water Withdrawals in the Laterals of Radial Collector Well (방사형집수정의 수평집수관에서 지질특성과 취수량의 상관관계 분석)

  • Kim, Tae-Hyung;Jeong, Jae-Hoon;Kim, Min;OH, Se-Hyoung;Lee, Jae-Sung
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.201-215
    • /
    • 2014
  • This study was performed to investigate the correlation between hydraulic conductivity and the flow rate of an aquifer, with the flow rate calculated from the laterals of the radial collector well using data obtained by the development project of riverbank filtration (Second Phase) in Changwon City. The hydraulic conductivity was empirically calculated from unconsolidated sediments collected from a sandy gravel layer along the middle-to-downstream sections of the Nakdong River. The Beyer equation produced the most suitable hydraulic conductivity from the various empirical formulas employed. The calculated hydraulic conductivity ranged from 0.083 to 0.264 cm/s, with an average value of 0.159 cm/s, suggesting that the aquifer in the study area possesses a high permeability with a good distribution of sandy gravel. The relationship between the calculated hydraulic conductivity in the aquifer and the entrance velocity into the screen, the flow rate was analyzed through the linear regression analysis. From the result of regression analysis, it showed that the hydraulic conductivity and the entrance velocity into the screen and the flow rate have a linear regression equation having about 72% of the high correlation. The result of verification in the measured data between each variable showed a high suitability from being consistent with the approximately 72% in the linear regression analysis. This study demonstrates that the groundwater flow rate can be estimated within the laterals of the radial collector well using a linear regression equation, if the hydraulic conductivity of the aquifer is known. This methodology could thus be applicable to other aquifers with hydraulic conductivity and permeability parameters similar to those in the present study area.

Evidences of Soil-Forming Processes and Groundwater Movement Obscuring Sedimentary Structures: A Trench Profile in Yongjang-li, Gyeongju, South Korea (퇴적 구조 관찰 시 유념해야 할 토양화 및 지하수 유동 흔적: 경주 용장리 트렌치 단면의 예)

  • Yoon, Soh-joung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • In 2017, Korea Institute of Geoscience and Mineral Resources (KIGAM) has excavated a trench at Yongjang-li in the city of Gyeongju to examine the evidence of fault movement related with the 2016 earthquake in unconsolidated sediments. In the trench profile, the author has observed the features of ongoing soil-forming processes and groundwater movement overlapped on the sedimentary layers. The soil formation was in its initial stage, and most of the original sedimentary layers could be observed. The color changes depending on the redox conditions and by the Mn/Fe oxide precipitation, however, were the most significant features obscuring sedimentary records. The dark Mn oxide precipitates formed at the groundwater levels often concealed the sedimentary unit boundaries. The groundwater levels varied depending on the particle sizes of the sedimentary layers contacting the groundwater, and the Mn oxide precipitates have formed at varying depths. The groundwater could move upward along the narrow pores in the fine-textured sedimentary layer more than a few meters showing the gray color indicating a reducing condition for iron.

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Sustainable Yield of Groundwater Resources of the Cheju Island (제주도 지하수자원의 최적 개발가능량)

  • Hahn, Jeong-Sang;Hahn, Kyu-Sang;Kim, Chang-Kil;Kim, Nam-Jong;Hahn, Chan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic log and aquifer test were analyzed to determine hydrogeologic characteristics of the Cheju island. The groundwater. of the Cheju island is occurred in unconsolidated pyroclastic deposits and crinker interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types under unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300㎡/day and 0.12 respectively, The total storage of groundwater is estimated about 44 billion cubic meters. Average annual precipitation is about 3,390 million ㎥ among which average recharge is estimated for 1,494 million ㎥ being equivalent 44.1% of total annual precipitation with 638 million ㎥ of runoff and 1,256 million ㎥ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million ㎥(41% of annual recharge)and rest is discharging into the sea. The geologic logs of recently drilled thermal water wells indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy silt derived from mainly volcanic ashes at the 1st stage volcanic activity of the area is situated at the 120${\pm}$68m below sea level. Another low-permeable sedimentary rock called Seogipo-formation which is deemed younger than the former marine sediment is occured at the area covering north-west and western part of the Cheju island at the ${\pm}$70m below sea level. If these impermeable beds art distributed as a basal formation of fresh water zone of the Cheju island, the most of groundwater in the Cheju island will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network (지하수수질측정망 자료를 활용한 경남지역 지하수 수질: 배경수질전용측정망에 의한 심도·지질별 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.39-54
    • /
    • 2020
  • This study analyzed the groundwater quality according to the depth and geological features in Gyeongsangnam-do area using groundwater quality monitoring network data to grasp the groundwater quality characteristics and to provide basic data for policy making on efficient groundwater management. Five hundred and three data sets were acquired from background water quality exclusive monitoring network in soil groundwater information system for five years (2013 ~ 2017). Except for the total coliforms and tracer items such as mercury, phenol, and others, the parameters of water quality were significant or very significant, depending on depth and geological features. As the depth got deeper, the average value of pH and electrical conductivity increased; water temperature, dissolved oxygen, oxide reduction potential, arsenic, total coliforms, and turbidity decreased; and total unfit rate for drinking water standards was lower. It was found that the sum of the positive and negative ions was the highest in the clastic sedimentary rock and the lowest in metamorphic rock. The total unfit rate for drinking water standards was the highest for metamorphic rocks, followed by clastic sedimentary rock and unconsolidated sediments and, finally, intrusive igneous rock with the lowest penetration. The Na-Cl water type, which indicated the possibility of contamination by external pollutants, appeared only at some points in shallow depths and in clastic sedimentary rocks.

Characteristics of short term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes (2017 포항 지진시 단기간 지하수위 변동 및 하천 유량 변화 특성)

  • Choi, Myoung-Rak;Lee, Ho-Jeong;Kim, Gyoo-Bum
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.557-566
    • /
    • 2018
  • Pohang earthquake (Main shock magnitude = 5.4) occurred in Southeastern region of South Korea in November 15, 2017. Groundwater levels of 6 monitoring wells with 5 minutes interval measurements located in that region and stream water levels of 4 stations located along the Hyeongsan-gang stream are used for the analysis of earthquake induced effects. Four groundwater monitoring wells show a short-term decrease of groundwater level after a main shock and one well does an increase and the maximum change is about 42.0 cm. Especially, groundwater levels at two monitoring wells near the epicenter are consistently maintained after a decrease. There is little relationship between earthquake magnitude or a distance to epicenter and changing amount of groundwater level and it may be due to the inhomogeneity of geologic material and unconsolidated sediments distribution. The changes in permeability of fractured zone and groundwater levels occasionally cause changes in stream flow rate, and water level of the Hyeongsan-gang stream in the study area decreases just after the earthquake and increases again up to the normal level and next shows an more gentle decreasing slope. Total increasing flow rates at S1 (upstream site) and S4 (downstream site) stations are about $12,096m^3$ and $116,640m^3$, respectively, during the increasing period.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF