• 제목/요약/키워드: Unconsolidated layer

검색결과 24건 처리시간 0.028초

퇴적 구조 관찰 시 유념해야 할 토양화 및 지하수 유동 흔적: 경주 용장리 트렌치 단면의 예 (Evidences of Soil-Forming Processes and Groundwater Movement Obscuring Sedimentary Structures: A Trench Profile in Yongjang-li, Gyeongju, South Korea)

  • 윤소정
    • 자원환경지질
    • /
    • 제52권6호
    • /
    • pp.519-528
    • /
    • 2019
  • 본 논문에서는 2017년 경주시 내남면 용장리 트렌치 단면에서 퇴적층을 관찰할 때 고려해야하는 토양화 과정과 지하수의 유동에 기인하여 나타나는 특성을 기술하였다. 지표로부터 굴착된 트렌치 단면은 토양화 과정과 지하수 유동에 의한 흔적을 포함하고 있어 퇴적학자들의 관찰에 영향을 줄 수 있다. 이 사이트 토양은 비교적 초기단계의 토양화 과정에 있어서 퇴적층의 특징을 관찰하는데 크게 어려움을 주지 않으나, 퇴적층리 관찰을 가장 어렵게 하는 요인은 지하수의 이동에 따른 망간산화물과 철산화물의 침전이었다. 지하수면을 따라 형성된 이 침전물은 퇴적층의 경계면에 형성되어 있기도 하고, 지하수면의 위치 또한 접하고 있는 퇴적층의 입자 크기에 따라 달라지므로 여러 위치에서 침전물이 관찰되었다. 또 이들 지하수면 상하부에서는 각기 철의 산화환원 상태에 따라 색변화가 관찰되므로 퇴적층 기술에 주의가 요구된다. 미세기공을 통해 모세관 현상으로 상부로 이동하는 지하수에 의해 일부 세립질 퇴적층이 지하수면 수 미터 상부까지 환원상태를 유지하면서 환원철 상태를 지시하는 색을 띠기도 하였다.

반사법 탄성파 탐사를 이용한 천부 지질 구조 (Subsurface Geological Structure Using Shallow Seismic Reflection Survey)

  • 김규한;공영세;오진용;이정모
    • 지구물리와물리탐사
    • /
    • 제2권1호
    • /
    • pp.8-16
    • /
    • 1999
  • 반사법 탄성파 탐사는 높은 해상도로지하지질구조를 구현할 수 있는 물리탐사방법중의 하나이지만 육상에서의 천부지층에 대한 반사법 탐사는 지표의 미고결층에 의한 고주파 에너지의 심한 감쇠현상과 진원근원의 강한 표면파로 인하여 고해상도의 반사단면 획득이 어렵다. 그러나, 자료취득시 장비 및 야외조건에 최적인 자료 취득상수의 선택과 자료처리시 세심한 주의를 기울일 경우, 높은 해상도의 중합단면도의 획득이 가능하다. 이번 반사법 탐사에서는 자료취득시 소형망치와 같은 저수준 에너지원의 진원과 40 Hz의 수직속도 수진기를 사용하였다. 진원점에서는 알루미늄판에 해머스타터를 부착하여 트리거신호를 얻었으며, 지면에 놓인 알루미늄판을 반복가격 후 수직중합하여 신호대 잡음비가 높은 기록을 획득할 수 있었다. 또한, 전통적인 공심점 기법과는 달리 이번 연구에서 고안 사용된 개량 공심점 기법은 야외에서 효율적으로 높은 중합수의 자료취득을 가능하게 했으며 그 결과도 양호한 것으로 밝혀졌다. 자료처리는 Linux를 운영체제로 하는 일반 PC에 접목된 SU(Seismic Unix)를 이용하여 기개발된 기법들을 적절하게 적용하였다.

  • PDF

해수침투 저감을 위한 균열암반 대수층 내 담수주입시험 (Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion)

  • 신제현;변중무
    • 자원환경지질
    • /
    • 제43권4호
    • /
    • pp.371-379
    • /
    • 2010
  • 연안지역 염수와 담수가 혼재하는 전이대에서 해수침투 피해개선을 목적으로 균열암반을 통한 담수주입시험을 수행하고 그 효과를 모니터링하였다. 담수주입은 절대적으로 그 지역의 지질학적, 수리학적 특성에 따라 좌우되며, 특히 파쇄대나 투수성 미고결 지층 등의 특성 파악이 중요하다. 연구 지역의 염담수 분포특성을 고려하여 두 개의 주요 연안 대수층인 충적층과 균열암반 구간을 통한 담수주입이 가능하도록 시추공을 설계 및 굴착하였으며, 균열암반 대수층 내 담수주입을 위하여 현장에서의 시험 준비, 이동, 조립 및 장비의 유지보수가 간단하도록 착탈식인 모듈화되어 있는 주입시스템을 제작하여 적용하였다. 시추공영상화검층을 통해 전체적인 균열의 특성을 파악하였고, 이를 바탕으로 주입공 및 관측공 간 투수성 파쇄대의 확인을 위한 구간별 담수주입 및 모니터링을 실시하여 담수주입 구간을 선정하였다. 담수주입시험 결과, 관측공의 일정 심도에서 담수가 유입되어 시간이 경과함에 따라 상부 구간의 전기전도도도 점진적으로 감소함을 보였으며, 담수주입 중단 및 패커를 해지한 후에도 유입된 심도에서 점진적으로 전기전도도값이 증가하기는 하지만 그 증가폭이 전체적으로 낮아 담수주입의 효과가 있음을 확인하였다. 또한 장기적으로 전기전도도값을 모니터링함으로써 담수주입의 효과가 수개월 후에도 지속됨을 확인하였으며, 이는 담수주입에 의해 일정 정도의 해수침투 피해에 대한 개선효과를 기대할 수 있음을 시사한다.

캐나다 아사바스카 오일샌드 지질특성 (Geology of Athabasca Oil Sands in Canada)

  • 권이균
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 오일샌드는 비재래형(unconventional) 석유자원의 하나로서 비투멘(bitumen), 물, 점토, 모래의 혼합물이다. 오일샌드 비투멘은 API 비중이 $8-14^{\circ}$이고 점도가 10,000 cP 이상인, 매우 무겁고 점성이 큰 탄화수소 자원으로서 일반적으로 지표나 천부퇴적층에서 유동성을 갖지 않는다. 오일샌드 비투멘은 주로 캐나다 앨버타주와 사스캐추완주에 분포하고 있으며, 캐나다에만 원시부존량이 1조 7천억 배럴, 확인매장량이 1천 7백억 배럴에 달한다. 대부분은 앨버타주 포트 멕머레이(Fort McMurray) 인근의 아사바스카(Athabasca), 콜드레이크(Cold Lake), 피스리버(Peace River) 지역에 매장되어 있다. 캐나다 오일샌드 저류지층은 아사바스카 지역의 멕머레이층(McMurray Fm)과 클리어워터층(Clearwater Fm), 콜드레이크 지역의 멕머레이층(McMurray Fm), 클리어워터층(Clearwater Fm), 그랜드래피드층(Grand Rapid Fm), 피스리버 지역의 블루스카이층(Bluesky Fm)과 게팅층(Gething Fm)이다. 이들 지층은 하부 백악기 지층으로서 중생대 초-중기에 발생한 북미판과 태평양판의 충돌과 그로 인한 대륙전면분지(foreland basin)의 형성과정에서 퇴적되었다. 분지의 기반암은 복잡한 지형을 갖는 고생대 탄산염암이며, 그 위에 북미대륙 북쪽의 보레알해(Boreal Sea)로부터 현재의 북미대륙 서부를 남북으로 관통하는 전기백악기내해로(Early Cretaceous Interior Seaway)를 따라 해침이 발생하면서 오일샌드 저류지층이 형성되었다. 세 개의 주요 오일샌드 분포지역 가운데 80% 이상의 오일샌드를 매장하고 있는 아사바스카 지역의 저류지층인 멕머레이층과 크리어워터층의 최하부층원인 와비스코 층원(Wabiskaw Mbr)은 전기 백악기 시기의 해침층서를 잘 반영하고 있다. 멕머레이층 하부에는 하성기원의 퇴적층이 발달하고, 상부로 가면서 점차로 조석기원의 천해 퇴적층이 우세해지며, 와비스코 층원에 와서는 의해 세립질 퇴적층이 광역적으로 분포한다. 이러한 해침기원의 상향 세립화 경향은 아사바스카 오일샌드 부존지역에서 일반적으로 관찰된다. 오일샌드 부존지층은 일반적으로 불균질 저류층이며, 주요 저류층은 하성퇴적층이나 에스츄어리(estuary) 기원의 퇴적층에 발달한 하도-포인트 바 복합체(channel-pont bar complex)이다. 이러한 하도-포인트바 복합체는 범람원 및 조수평원 세립질 퇴적층이나 만-충진(bay-fill) 퇴적층과 함께 멕머레이층을 형성한다. 멕머레이층 상부에 오는 와비스코 층원은 주로 외해 세립질 퇴적층으로 이루어져 있으나, 멕머레이층을 대규모로 침식하는 하도사암층이 지역적으로 발달하기도 한다. 캐나다에서 오일샌드는 주로 노천채굴(surface mining)과 심부열회수(in-situ thermal recovery) 방식으로 생산한다. 50 m 미만의 심도에 묻혀있는 오일샌드는 노천채굴 방식으로 회수하여 비투멘 추출(extraction)과 개질(upgrading)과정을 거쳐 합성원유(synthetic crude oil)로 생산된다. 반면에 150-450 m 심도에 묻혀있는 오일샌드는 주로 심부열회수 방식으로 비투멘을 회수하여 비교적 간단한 비투멘 블렌딩(blending)과정을 통해 유동성을 증가시켜 정유시설로 운반한다. 심부열회수 방식으로 오일샌드를 개발할 경우 주로 스팀주입중력법(SAGD: Steam Assisted Gravity Drainage)이나 주기적스팀강화법(CSS: Cyclic Steam Stimulation)이 사용된다. 이러한 방법들은 저류층에 스팀을 주입하여 저류층 내의 온도를 상승시킴으로써 비투멘의 유동성을 증가시켜 회수하는 기술을 사용한다. 따라서 오일샌드 저류층 내부의 스팀전파효율을 결정하는 저류지층의 주요 지질특성에 대한 이해가 선행되어야 효과적인 생산설계와 효율적인 생산을 수행할 수 있다. 오일샌드 생산에 영향을 미치는 저류층의 주요 지질특성에는 (1)비투멘 샌드층의 두께(pay) 및 연결성(connectivity), (2) 비투멘 함량, (3) 저류지역 지질구조, (4) 이질배플(mud baffle)이나 이질프러그(mud plug)의 분포, (5) 비투멘 샌드층에 협재하는 이질퇴적층의 두께 및 수평연장성(lateral continuity), (6) 수포화층(water-saturated sand)의 분포, (7) 가스포화층(gas-saturated sand)의 분포, (8) 포인트바의 성장방향성, (9) 속성층(diagenetic layer)의 분포, (10) 비투멘 샌드층의 조직특성 변화 등이 있다. 이러한 지질특성에 대한 고해상의 분석을 통해 보다 효과적인 오일샌드 개발이 달성될 수 있을 것이다.

  • PDF