• 제목/요약/키워드: Unconfined strength

Search Result 574, Processing Time 0.022 seconds

Compaction and unconfined compressive strength of sand modified by class F fly ash

  • Bera, Ashis K.;Chakraborty, Sourav
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.261-273
    • /
    • 2015
  • In the present investigation, a series of laboratory compaction and unconfined compressive strength laboratory tests has been performed. To determine the effect of compaction energy, type of sand, and fly ash content, compaction tests have been performed with varying compaction energy ($2700kJ/m^3-300kJ/m^3$), types of sand, and fly ash content (0% to 40%) respectively. From the experimental results, it has been found that the optimum value of unconfined compressive strength obtained for a sand-fly ash mixture comprised of 65% sand and 35% fly ash. Based on the data obtained in the present investigation, a linear mathematical model has been developed to predict the OMC of sand-fly ash mixture.

Suction Stress and Unconfined Compressive Strength of Compacted Unsaturated Silty Sand (다짐된 불포화 실트질 모래의 흡수응력과 일축압축강도)

  • Park, Seong-Wan;Kwon, Hong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.31-37
    • /
    • 2011
  • In order to evaluate the effect of matric suction on the strength and deformation characteristics, the unsaturated unconfined compression test is performed for the statical1y compacted silty sand. Specimens used were made under conditions with various initial degrees of saturation. The initial matric suction, matric suction at the peak shear strength and the volumetric deformation during the shear process were measured. From these results, it was found that the initial degree of saturation exerts the influence on the behaviors of suction, peak shear strength and the volumetric deformation. Furthermore, the suction stress($P_s$) which means the apparent cohesion due to matric suction in the unsaturated shear strength could be derived.

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

Engineering Characteristics of Cement Milk for Bored Piles (매입말뚝공법의 충전재료로 사용되는 시멘트밀크의 공학적 특성)

  • Do, Jong-Nam;Nam, Moon-Seok;Shim, Jae-Won;Park, Young-Ho;Lee, Seung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.29-43
    • /
    • 2015
  • In this study, engineering property tests were conducted for cement milk used as a filling materials in the bored piles method. For this purpose, various water/cement ratio specimens were produced on the basis of standard specimen specified in highway corporation specifications. The unconfined compressive strength, point load strength, elasticity modulus, poisson's ratio test was performed according to the age. As a test result, injection height for productions of cement milk specimens was defined ratios. Correlation coefficient K of the unconfined compressive strength and point load strength were $K_7=4.55{\sim}13.65$ in age 7 days, and $K_{28}=5.28{\sim}16.84$ in age 28 days. When water / cement ratio is 65-150%, the elastic modulus and Poisson's ratio significantly increased and decreased regardless of age. In addition, the formulae were proposed for unconfined compressive strength, point load strength, a correlation coefficient of unconfined compressive strength, point load strength, elastic modulus, and poisson's ratio for each age.

Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils

  • Yilmaz, Yuksel;Eun, Jongwan;Goren, Aysegul
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.375-384
    • /
    • 2018
  • Unconfined compressive strength (UCS) of high plasticity clayey soil mixed with 5 and 10 % of Portland cement and four chemical agents such as sodium hexametaphosphate, aluminum sulfate, sodium carbonate, and sodium silicate with 0, 5, 10, and 20% concentrations was comparatively evaluated. The individual and combined effects of the cement and chemical agents on the UCS of the soil mixture were investigated. The strength of the soil-cement mixture generally increases with increasing the cement content. However, if the chemical agent is added to the mixture, the strength of the cement-chemical agent-soil mixture tends to vary depending on the type and the amount of the chemical agent. At low concentrations of 5% of aluminum sulfate and 5% and 10% of sodium carbonate, the average UCS of the cement-chemical agent-soil mixture slightly increased compared to pure clay due to increasing the flocculation of the clay in the mixture. However, at high concentrations (20%) of all chemical agents, the UCS significantly decreased compared to the pure clay and clay-cement mixtures. In the case of high cement content, the rate of UCS reduction is the highest among all cement-chemical agent-soil mixtures, which is more than three times higher in comparison to the soil-chemical agent mixtures without cement. Therefore, in the mixture with high cement (> 10%), the reduction of the USC is very sensitive when the chemical agent is added.

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

Engineering Properties of Fiber Mixed Soil (섬유 혼합토의 공학적 특성)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • Natural resources fur the construction materials such as good soil, sand, and coarse aggregates have been encountered to be short due to excessive use by human. Even though some soil has been found to be unsuitable for construction materials, soil with reinforcement can naturally be an answer to these alternatives. According to recently published papers on fiber mixed soil, fiber mixed with soil can improve shear strength, compressive strength and post-peak load strength retention. In this study, a series of tests were performed to clarify the characteristics of fiber mixed soil and to give basic data for design and construction and their engineering properties, that is, unconfined compressive strength, splitting tensile strength, shear strength, crack by drying, freeze-thaw, creep and Poisson\`s ratio, were investigated and analyzed. It has been shown that fiber mixed soil is one of good alternatives fur the civil and building construction materials.

Development of Strength Prediction Model for Lightweight Soil Using Polynomial Regression Analysis (다항회귀분석을 활용한 혼합경량토의 강도산정 모델 개발)

  • Lim, Byung-Gwon;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • The objective of this study was to develop a strength prediction model using a polynomial regression analysis based on the experimental results obtained from ninety samples. As the results of a correlation analysis between various mixing factors and unconfined compressive strength using SPSS (statistical package for the social sciences), the governing factors in the strength of lightweight soil were found to be the crumb rubber content, bottom ash content,and water-cement ratio. After selecting the governing factors affecting the strength through the correlation analysis, a strength prediction model, which consisted of the selected governing factors, was developed using the polynomial regression analysis. The strengths calculated from the proposed model were similar to those resulting from laboratory tests (R2=87.5%). Therefore, the proposed model can be used to predict the strength of lightweight mixtures with various mixing ratios without time-consuming experimental tests.

The Analysis of Internal & External Stabilities and Factors for D.C.M Design (DCM 설계에서 주요 인자의 결정과 내.외적 안정해석)

  • Lee, Choong-Ho;Jung, Seung-Yong;Han, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.793-808
    • /
    • 2009
  • This paper presents procedure and prediction method of internal and external stabilities when designing D.C.M, with main factors to be considered, such as chemical reaction of additive, physical properties of stabilized body and mixing strength. Results show that through case studies, a design unconfined compressive strength of stabilized body (hereafter referred to as 'compressive strength') directly depends on the quantity of cement, which is decided by laboratory test, and the compressive strength enormously affects internal and external stabilities. So laboratory mixing test to obtain the compressive strength for design allowable stress should be given careful considerations.

  • PDF