• Title/Summary/Keyword: Unconfined strength

Search Result 574, Processing Time 0.021 seconds

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng;Xueyu Geng
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.501-511
    • /
    • 2023
  • The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets

  • Wu, Han-Liang;Wang, Yuan-Feng
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.501-516
    • /
    • 2010
  • This paper is aiming to study the performances of reinforced high-strength concrete (HSC) short columns confined with aramid fibre-reinforced polymer (AFRP) sheets. An experimental program, which involved 45 confined columns and nine unconfined columns, was carried out in this study. All the columns were circular in cross section and tested under axial compressive load. The considered parameters included the concrete strength, amount of AFRP layers, and ratio of hoop reinforcements. Based on the experimental results, a prediction model for the axial stress-strain curves of the confined columns was proposed. It was observed from the experiment that there was a great increment in the compressive strength of the columns when the amount of AFRP layers increases, similar as the ultimate strain. However, these increments were reduced as the concrete strength increasing. Comparisons with other existing prediction models present that the proposed model can provide more accurate predictions.

Strength variation of cemented sand due to wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.511-518
    • /
    • 2009
  • In this study, by the consideration of in situ curing conditions, cemented sand with cement ratio less than 20% is prepared by air dry condition and then wetted. A series of unconfined compression tests are carried out to evaluate the effect of wetting on the strength of cemented soils. Strength of air dry cured specimen drops to maximum 30% after wetting at the end of curing period when cement ratio is low. However, regardless of cement ratio, strength of repetitively wetted specimens during curing increases as the number of wetting increases. The results of this study can predict the strength variation of cemented sand depending on wetting conditions in the field, which can guarantee the safety of geotechnical structures such as dam.

  • PDF

Mechanical Properties of Waste Tire Powder - Added Lightweight Soil (폐타이어 분말을 이용한 혼합경량토의 역학적 특성 연구)

  • Kim, Yun Tae;Kang, Hyo Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.247-253
    • /
    • 2008
  • This paper investigates the mechanical characteristics of waste tire powder-added lightweight soil in which dredged soils, waste tire powder and bottom ash were reused. In this study, 5 groups of soil samples were prepared with varing contents of waste tire powder ranged from 0% to 100% at 25% intervals by the dredged soil weight. The mixed soil samples were subjected to unconfined compression and elastic wave tests to investigate their unconfined compressive strengths and dynamic properties. Test results showed that the unconfined compressive strength and unit weight decreased as the waste tire powder contents increased, but axial strain at failure increased. Also stress-strain relationship of waste tire powder-added lightweight soil showed a ductile behavior rather than a brittle behavior. The result of elastic wave tests indicated that the higher waste tire powder content, the lower elastic wave velocity and the lower shear modulus (G).

Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture

  • Fard, Ata Rezaei;Moradi, Gholam;Ghalehjough, Babak Karimi;Abbasnejad, Alireza
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2020
  • Freezing-thawing cycles have significant effect on soils engineering behavior in frozen areas. This effect is more considerable in fine-graded than coarse-grained soils. The objective of this study is improving soil durability and strength in continues freezing-thawing cycles. For getting this purpose mixture of Polyvinyl Acetate (PVAc) and Ethylene Glycol Monobutyl Ether (EGBE) has been added to fine-grained soil and final prepared samples were tested at different freezing-thawing cycles. PVAc was mixed with 1%, 2% and 3% of soil weight. Half of PVAc weight was used as weight of EGBE. Freezing-Thawing cycles were exposed to samples and they were tested at different cycles. Results showed that adding mixture of PVAc+EGBE improved strength and durability of samples up to 10 freezing-thawing cycles. Unconfined compress strength tests were applied to samples and stress and strain of samples were tested on failure time. Behavior of samples was different at different percentages of mixture. Results showed that increasing amount of PVAc from 1% to 2% had more considerable effect on final stress than 2% to 3%. Using higher percentages of PVAc + EGBE mixture leaded to that samples carried more strain before collapsing. Another result gained from tests was that, freezing-thawing effect was more considerable after fourth cycles. It means differences between first and fourth cycles were more considerable than differences between fourth and tenth.

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Strength and Effectiveness of Grouting of Sand Treated with Bacteria (Bacteria로 처리된 모래지반의 강도 및 주입효과)

  • Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • The purpose of this study is to confirm strength and effectiveness of grouting of the sand treated with bacteria. In order to analyze the cementation of sand treated with bacteria, five types of specimens(Not treated, Cement 2% treatment, Cement 4% treatment, Cement 2% + $CaCO_3$ 2% treatment and $CaCO_3$ 4% treatment) were made. Unconfined compressive strength tests were done on $D\;5cm{\times}H\;10cm$ specimens and biogrouting tests were performed on $D\;6cm{\times}H\;12cm$ specimens to observe the effectiveness of grouting with bacteria. As a result, Cement 2% + $CaCO_3$ 2% treatment was found to be the most effective in terms of the unconfined compressive strength.