• 제목/요약/키워드: Unconfined compression strength

검색결과 247건 처리시간 0.028초

저소성실트를 이용한 시멘트 혼합토의 강도 예측 (Strength Prediction of Cement-Admixed using Low Plasticity Silt)

  • 박종찬;박민철;전제성;정상국;박경한;이송
    • 한국지반환경공학회 논문집
    • /
    • 제15권7호
    • /
    • pp.31-38
    • /
    • 2014
  • 소일 시멘트 혼합토의 역학적 성질을 파악할 수 있는 인자로서는 일축압축강도로 기존 연구사례에서 제시되었다. 본 연구에서는 저소성실트를 이용한 시멘트 혼합토의 일축압축강도 시험을 통해 실트함수비, 재령일, 시멘트 함유율에 대한 역학적 변화를 분석하였으며, Abrams가 제안한 B계수에 대한 변화를 기존연구사례와 비교 분석 및 시멘트 혼합토의 일축압축강도 예측식도 제안하였다. 상수 B계수값은 토질의 특성 및 재령일 등에 따라 변화였으며, B계수 변화의 적정성 여부를 일축압축강도로 분석한 결과 변수형태의 고려가 적정한 것으로 나타났다. Abrams 방정식을 적용하고 재령일, 시멘트 함유율과 재령일을 고려한 저소성실트 혼합토의 일축압축강도 예측식을 제안하였다.

Applications of Air-Foamed Stabilized Soil as Potential Subgrade Material of Railway Track

  • Park, Dae-Wook;Vo, Hai Viet;Lim, Yujin
    • International Journal of Railway
    • /
    • 제7권4호
    • /
    • pp.91-93
    • /
    • 2014
  • In these days, use of proper soils for construction materials become more limited, but wasted soils are abundant; therefore, the method which can use wasted soil such as soft clay has been investigated. Air-foamed stabilized soil has been used widely, but never been used as a subgrade material. The aim of this study is to verify the use of air-foamed stabilized soil as the subgrade construction material. Several wasted soils such as soft clay was selected to make air-foamed stabilized soil mixtures. The air-foamed stabilized mixture design was conducted to find the optimum quantity of stabilizing agent (cement) and air-foamed, and the effect of cement quantity and air-foamed quantity on strength of air-foamed stabilized soil mixtures base on the test results of unconfined compression test was investigated. As the quantity of cement is increased, the strength is increased, but the quantity of air-foamed is increased and the strength is decreased. Elastic moduli based on unconfined compression strength were obtained to use as subgrade of railway track design.

Engineering Properties of Flowable Fills with Various Waste Materials

  • Lee, Kwan-Ho;Lee, Byung-Sik;Cho, Kyung-Rae
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.105-110
    • /
    • 2008
  • Flowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill with waste materials. Various materials, including two waste foundry sands(WFS), an anti-corrosive waste foundry sand and natural soil, were used as a fine aggregate in this study. Natural sea sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowable fill hardens was determined and the strength at 28-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, were determined for the samples prepared by different curing times. The creep test for settlement potential was conducted. The data presented show that by-product foundry sand, an anti-corrosive WFS, and natural soil can be successfully used in controlled low strength materials(CLSM), and it provides similar or better properties to that of CLSM containing natural sea sand.

풍화대소켓 현장타설말뚝의 극한단위선단지지력과 원위치 지반조사방법들과의 상관관계 분석 (An Analysis on Co-relationships Between In-situ Investigation Methods and End Bearing Capacity of A Drilled Shaft Socketed into the Weathered Zone)

  • 최용규;권오성;이종성;최성순;정성민
    • 대한토목학회논문집
    • /
    • 제30권2C호
    • /
    • pp.95-107
    • /
    • 2010
  • 일반적으로 암반에 소켓된 현장타설말뚝기초의 선단지지력은 일축압축강도를 이용하여 산정하고 있다. 그러나, 풍화대 지반에서는 불교란시료의 채취가 어려워 일축압축강도를 확인하는 것이 곤란하므로 기존 지지력산정공식을 사용할 수 없다. 따라서 본 연구에서는 풍화대 지반에서 수행할 수 있는 원위치시험들(SPT, DCPT, PMT, BST)의 특성치와 현장타설말뚝의 선단지지력과의 관계를 말뚝선단부에 인접한 5개의 구간들(선단부, 선단~하부1D, 선단~하부2D, 상부1D~하부1D, 상부1D~하부2D)에 대하여 분석하였다. 그 결과 DCTP의 결과가 가장 신뢰성 있는 상관관계를 나타내었다. 또한 DCPT를 이용한 선단지지력의 설계도표를 제안하였다.

동결토의 압축강도에 관한 실험적 연구 (Experimental Studies on the Compressive Strength of the Frozen Soils)

  • 유능환;최중돈;유영선;조영택
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF

준설토를 이용한 경량기포혼합토의 역학적 특성 연구 (Mechanical Characteristics of Light-weighted Foam Soil Consisting of Dredged Soils)

  • 김주철;이종규
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.309-317
    • /
    • 2002
  • 본 논문은 경량기포혼합토(LWFS)의 역학적 특성에 대하여 연구하였다. 경량기포혼합토는 단위중량의 감소와 압축 강도의 증가를 위하여 연안준설토, 고화제 및 기포를 혼합하여 제작되었다. 초기함수비, 고화제 함유율, 양생조건 및 구속압 등 다양한 조건으로 경량기포혼합토를 제작하여 일축 및 삼축압축시험을 실시하였다. 경량기포혼합토의 실험결과는 동일한 단위중량일 경우 응력-변형 거동과 압축강도는 준설토의 초기함수비보다 고화제 함유율에 더 영향을 받는 것으로 나타났다. 한편 삼축압축시험에서 응력-변형 관계는 양생조건에 관계없이 변형-연화거동을 나타내었다. 구속압에 따른 응력-변형 거동은 경량기포혼합토의 일축압축강도와 근접한 구속압을 경계로 다르게 변화하는 것으로 나타났다. 압축강도 200kPa 이상으로 지반개량을 하기 위해 요구되는 경량기포혼합토의 배합비는 준설토의 초기함수비 100%~160%와 고화제 함유율 6.6%로 나타났다.

준설토 재활용을 위한 무보강 및 보강 경량토의 압축거동특성 비교 (Comparison of Compressive Behavior Characteristics between Unreinforced and Reinforced Lightweight Soils for Recycling of Dredged Soils)

  • 김윤태;권용규;김홍주
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.44-49
    • /
    • 2005
  • This paper investigates strength characteristics and stress-strain behaviors of unreinforced and reinforced lightweight soils. Lightweight soil, composed of dredged soil, cement, and air-foam, was reinforced by a waste fishing net, in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions, such as cement content, initial water content, air content, and waste fishing net; then, unconfined compression tests were carried out on these specimens. From the test results, it was shown that reinforced lightweight soil had different behavior after failure, even though it had similar behavior as unreinforced lightweight soil before failure. The test results also showed that stress became constant after peak strength in reinforced lightweight soil, while the stress decreased continuously in unreinforced lightweight soil. It was observed that the strength was increased due to reinforcing effect by the waste fishing net for most cases, except high water content greater than $218\%$. In the case of high water content, a reinforcing effect is negligible, due to slip between waste fishing net and soil particles. In reinforced lightweight soil, secant modulus (E50) was increased, due to the inclusion of waste fishing net.

PVA 시멘트 혼합토의 공학적 특성 연구 (A Study on the Engineering Characteristics of PVA (Polyvinyl Alcohol) Fiber-Cement-Soil Mixtures)

  • 김영익;연규석;김기성;유경완;김용성
    • 한국농공학회논문집
    • /
    • 제53권2호
    • /
    • pp.35-43
    • /
    • 2011
  • This study aimed to investigate the engineering characteristics of PVA fiber-cement-soil mixture used to prevent or reduce brittle failure of cement-soil mixtures due to the tensile strength increase from the addition of a synthetic fiber. The engineering characteristics of PVA fiber-cement-soil mixtures composed of PVA fiber, soil, and a small amount of cement was analysed on the basis of the compaction test, the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The specimens were manufactured with soil, cement and PVA fiber. The cement contents was 2, 4, 6, 8, and 10%, and the fiber contents was 0.4, 0.6, 0.8, and 1.0% by the weight of total dry soil. To investigate the strength characteristics depending on age, each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of PVA fiber-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The basic data were presented for the application of PVA fiber-cement-soil mixtures as construction materials.

극한지에서의 유체기계를 위한 플랜트 설비구조물의 비파괴 건전도 평가 (Strength Evaluation of the Plant Facility for Fluid Machinery Using Schmidt Hammer in Cold Regions)

  • 홍승서;김영석
    • 한국유체기계학회 논문집
    • /
    • 제19권3호
    • /
    • pp.25-28
    • /
    • 2016
  • The Schmidt hammer test is one of the best nondestructive tests to measure the strength without breaking structures, which has been used to measure the strength of concrete structures in a simple way at construction sites. However, the future research is needed to apply Schmidt hammer in cold regions. This study is intended to investigate the correlation between unconfined compression test result of the oil storage facilities foundation taken at the King Sejong Antarctic Station and Schmidt hammer test result at the sample-taking site. Also, the equation for uniaxial compression strength using Schmidt hammer rebound value is proposed.

흙의 다짐에 관한 연구(제4보) -흙의 다짐이 -축골조강동 및 투수계수에 미치는 영향- (Study on the Soil Compaction (Part 4) -The Influence of Soil Compadtion on Unconfined Compressive Strength and Coefficient of Permeability-)

  • 강예묵
    • 한국농공학회지
    • /
    • 제12권3호
    • /
    • pp.2003-2012
    • /
    • 1970
  • In order to the influence of grain size distribution on compressive strength and coefficient of permeability, unconfined compression test and permeability test were performed for seventy samples that have various grain-size distributions. Its results are as follows: 1. Maximum unconfined compressive strength appears at the dry side of optimum moisture content. 2. Unconfined compressive strength is proportional to the increase of percent passing of No. 200 sieve. 3. Precent of deformation in failure increases in proportion to the increase of percent passing of No. 200 sieve, and modulus of No. 200 sieve, and modulus of deformation also increases in proportion to percent passing of No. 200 sieve. 4. Unconfined compressive strength increases in proportion to uniformity coefficient, liquid limit and plastic index, but it decreases gradually according to the increase of coefficient of grading and classification area. 5. Maximum dry density decreases according to the increase of void ratio. 6. Coefficient of permeability decreases according to the increase of percent passing of No. 200 sieve, and when percent of No. 200 sieve, and when percent passing of No. 200 enlarged more than 40%, it becomes less than $10^{-6}cm/sec$ which is the limit of coefficient of permeability of core material for earth dam proposed by Lee. 7. Coefficient of permeability increases according to the increase of coefficient of grading, classification area and index of Talbot formula r, but it was rather decrease by the increase of uniformity coefficient. 8. Coefficient of permeability seems to depend on the size and the shape of the flow path which is a series of void to be concerned by the size and the proprton of soil grain, even though void ratios are same.

  • PDF