• Title/Summary/Keyword: Uncinate fasciculus

Search Result 2, Processing Time 0.015 seconds

The Uncinate Fasciculus Sub-Tract Connecting Face-Specific Regions in Patients with Social Anxiety Disorder : A Preliminary Study (사회불안장애 환자의 얼굴 관련 영역을 잇는 갈고리다발 하부경로 : 예비연구)

  • Kang, Bongsuk;Lee, YoonJi Irene;Lee, Jae-Yeon;Choi, Soo-Hee
    • Anxiety and mood
    • /
    • v.16 no.2
    • /
    • pp.106-112
    • /
    • 2020
  • Objective : Social anxiety disorder (SAD) is characterized by fear of social threat and exhibits limbic hyper-reactivity toward social stimuli such as emotional faces. A previous study identified the uncinate fasciculus (UF) sub-tract as particularly related to facial memory. To explore the white matter tract relating to face-specific brain regions, we investigated the UF sub-tract in SAD. Methods : The diffusion tensor images of 22 patients with SAD and 20 healthy controls were analyzed with tractography. The UF sub-tract was delineated using the regions of interest of face patches in the anterior temporal lobe and the orbitofrontal cortex, and fractional anisotrophy (FA) and total number of streamlines (ST) were analyzed. We examined the group comparison of FA and ST of the UF sub-tract and correlations of FA and ST with the social anxiety symptoms such as the Liebowitz Social Anxiety Scale (LSAS), the Social Interaction Anxiety Scale (SIAS), the Social Phobia Scale (SPS) and the Fear of Negative Evaluation scale (FNE) in SAD. Results : There were no group differences in FA and ST of the UF sub-tract. However, negative correlations were observed between ST of the right UF sub-tract and severity of social anxiety symptoms (LSAS, rs=-0.480, p=0.024; SIAS, rs=-0.580, p=0.005; SPS, rs=-0.590, p=0.004; FNE, rs=-0.675, p=0.001) in patients with SAD. Conclusion : Although patients with SAD did not show quantitative abnormalities in the UF sub-tact connecting face-specific brain regions, this structure seems to play a role in the symptom severity of SAD.

A Understanding of the Temporal Stem

  • Choi, Chan-Young;Han, Seong-Rok;Yee, Gi-Taek;Lee, Chae-Heuck
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.5
    • /
    • pp.365-369
    • /
    • 2010
  • Objective : There has been inconsistency about definition of the temporal stem despite of several descriptions demonstrating its microanatomy using fiber dissection and/or diffusion tensor tractography. This study was designed to clarify three dimensional configurations of the temporal stem. Methods : The fronto-temporal regions of several formalin-fixed human cerebral hemispheres were dissected under an operating microscope using the fiber dissection technique. The consecutive coronal cuts of the dissected specimens were made to define the relationships of white matter tracts comprising the temporal stem and the subcortical gray matters (thalamus, caudate nucleus, amygdala) with inferior limiting (circular) sulcus of insula. Results : The inferior limiting sulcus of insula, limen insulae, medial sylvian groove, and caudate nucleus/amygdala were more appropriate anatomical structures than the roof/dorso-lateral wall of the temporal horn and lateral geniculate body which were used to describe previously for delineating the temporal stem. The particular space located inside the line connecting the inferior limiting sulcus of insula, limen insulae, medial sylvian groove/amygdala, and tail of caudate nucleus could be documented. This space included the extreme capsule, uncinate fasciculus, inferior occipito-frontal fasciculus, anterior commissure, ansa peduncularis, and inferior thalamic peduncle including optic radiations, whereas the stria terminalis, cingulum, fimbria, and inferior longitudinal fiber of the temporal lobe were not passing through this space. Also, this continued posteriorly along the caudate nucleus and limiting sulcus of the insula. Conclusion : The temporal stem is white matter fibers passing through a particular space of the temporal lobe located inside the line connecting the inferior limiting sulcus of insula, limen insulae, medial sylvian groove/amygdala, and tail of caudate nucleus. The three dimensional configurations of the temporal stem are expected to give the very useful anatomical and surgical insights in the temporal lobe.