• 제목/요약/키워드: Uncertainty parameter

검색결과 700건 처리시간 0.028초

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

파라미터 불확실성 및 모델 불확실성에 대한 $H^{\infty}$ 견실성능 제어기 설계 (Robust $H^{\infty}$ Performance Controller Design with Parameter Uncertainty and Unmodeled Dynamics)

  • 이갑래;오도창;박홍배
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 1997
  • The method of designing robust two degree of freedom(2 DOF) controllers for linear systems with parameter uncertainties and unmodeled dynamics is presented in this paper. Robust performance condition that accounts for robust model matching of closed loop system and disturbance rejection is derived. Using the robust performance condition, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while prefilter is used to improve the robust model matching properties. The $H^{\infty}$ and $\mu$ controller for six degree of freedom vehicle with parameter variations are designed and compared. Simulations for hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.

  • PDF

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

플라스틱재료의 기계적 특성시험 불확도추정에 대한 고찰 (A Study on Estimation uncertainty of measurement in mechanical characteristic exam for Plastic materials)

  • 김원경;권성태;김정남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.301-306
    • /
    • 2003
  • Recently, uncertainty of measurement became a major concern for the people working on the laboratory evaluation and accreditation. 'uncertainty of measurement is a parameter associated with the result of a measurement that characteristics the dispersion of the value that could reasonably be attributed to the measured.' This study analysed how to estimate uncertainty of measurement in mechanical characteristic exam for Plastic material. its uncertainty was estimated according to International Organization for Standardization(ISO), they were named to A type uncertainty, B type uncertainty, combined standard uncertainty, and expanded uncertainty. We obtained that the combined standard uncertainty was 0.96697 MPa and the expanded uncertainty was 2.291MPa.

  • PDF

Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석 (Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique)

  • 최정현;장수형;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

SWAT-CUP을 이용한 유출 및 유사모의 불확실성 분석 (Uncertainty Analysis on the Simulations of Runoff and Sediment Using SWAT-CUP)

  • 김민호;허태영;정세웅
    • 한국물환경학회지
    • /
    • 제29권5호
    • /
    • pp.681-690
    • /
    • 2013
  • Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

암반에 전달된 밀장전 발파압력의 확률론적 예측 I - 최대 발파압력 예측을 중심으로 - (Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass I - Estimation of peak blasting pressure -)

  • 박봉기;이인모;김동현
    • 한국터널지하공간학회 논문집
    • /
    • 제5권4호
    • /
    • pp.337-348
    • /
    • 2003
  • 밀장전한 암반 발파공에서 화약 폭발시 발생하는 고압의 폭굉압력 전파메카니즘을 충격파 이론을 적용하여 규명하고 전달된 발파압력 산정식을 유도하였다. 유도된 발파압력 산정식은 폭굉파속도, 단열지수, 화약밀도, Hugoniot 상수, 암반밀도의 함수였다. 에멀젼 화약과 서울 화강암의 특성시험을 시행하여 각 특성치의 확률분포를 정의하고 발파압력 산정식에 적용하여 발파압력의 확률분포를 산출하였다. 화약 특성치와 암반 특성치의 확률분포는 정규분포를 나타냈으며 따라서 발파압력의 확률분포도 정규분포로 추정되었다. 발파압력에 대한 매개변수분석을 시행한 결과 폭굉파속도가 발파압력에 가장 크게 영향을 미쳤다. 또한 이런 특성치의 불확실성이 발파압력의 불확실성에 미치는 영향을 분석하였다. 분석결과 암반특성치의 불확실성이 화약특성치보다 더 크게 영향을 미쳤다. 비록 매개변수분석에서 폭굉파속도가 발파압력에 가장 크게 영향을 미치는 요소이지만 암반특성치의 불확실성이 폭굉파속도의 불확실성보다 더 크기 때문에 발파압력은 후자보다 전자에 의해서 더 크게 영향을 받는다.

  • PDF

Derivation of uncertainty importance measure and its application

  • Park, Chang-K.
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1990년도 춘계공동학술대회논문집; 한국과학기술원; 28 Apr. 1990
    • /
    • pp.272-288
    • /
    • 1990
  • The uncertainty quantification process in probabilistic Risk Assessment usually involves a specification of the uncertainty in the input data and the propagation of this uncertainty to the final risk results. The distributional sensitivity analysis is to study the impact of the various assumptions made during the quantification of input parameter uncertainties on the final output uncertainty. The uncertainty importance of input parameters, in this case, should reflect the degree of changes in the whole output distribution and not just in a point estimate value. A measure of the uncertainty importance is proposed in the present paper. The measure is called the distributional sensitivity measure(DSM) and explicitly derived from the definition of the Kullback's discrimination information. The DSM is applied to three typical discrimination information. The DSM is applied to three typical cases of input distributional changes: 1) Uncertainty is completely eliminated, 2) Uncertainty range is increased by a factor of 10, and 3) Type of distribution is changed. For all three cases of application, the DSM-based importance ranking agrees very well with the observed changes of output distribution while other statistical parameters are shown to be insensitive.

  • PDF

불확실성 추정을 갖는 새로운 슬라이딩 모드제어기의 설계 (A study on the Novel Sliding Mode Controller with Uncertainty Adaptation)

  • 김민찬;박승규;안호균;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.332-332
    • /
    • 2000
  • In this paper, a novel sliding mode control with uncertainty adaptation is produced by introducing a virtual state. Because upper bounds of the uncertainty is difficult to know, we estimate these upper bound by using the simple adaptation law and design the novel sliding mode controller. The nominal controller is used the optimal controller to minimize cost function.

  • PDF

앙상블 유량예측기법의 불확실성 평가 (Uncertainty assessment of ensemble streamflow prediction method)

  • 김선호;강신욱;배덕효
    • 한국수자원학회논문집
    • /
    • 제51권6호
    • /
    • pp.523-533
    • /
    • 2018
  • 본 연구에서는 충주댐 유역에 대해 앙상블 유량예측기법의 강우-유출 모델 매개변수, 입력자료에 따른 불확실성 분석을 수행하였다. 앙상블 유량예측기법으로는 ESP (Ensemble Streamflow Prediction) 기법과 BAYES-ESP (Bayesian-ESP) 기법을 활용하였으며, 강우-유출 모델로는 ABCD를 활용하였다. 모델 매개변수에 따른 불확실성 분석은 GLUE (Generalized Likelihood Uncertainty Estimation) 기법을 적용하였으며, 입력자료에 따른 불확실성 분석은 유량예측 앙상블에 활용되는 기상시나리오의 기간에 따라 수행하였다. 연구결과 앙상블 유량예측 기법은 입력자료 보다 모델 매개변수의 영향을 크게 받았으며, 20년 이상의 관측 기상자료가 확보되었을 때 활용하는 것이 적절하였다. 또한 BAYES-ESP는 ESP에 비해 불확실성을 감소시킬 수 있는 것으로 나타났다. 본 연구는 불확실성 분석을 통해 앙상블 유량예측기법의 특징을 규명하고 오차의 원인을 분석하였다는 점에서 가치가 있다고 판단된다.