• Title/Summary/Keyword: Uncertainty evaluation

Search Result 892, Processing Time 0.026 seconds

Uncertainty Quantification of Welding Residual Stress Analysis based on Domestic Organizations Round-Robin Evaluation (라운드로빈 평가 결과에 기반한 국내 기관의 용접잔류응력 해석 분포의 불확실성 평가)

  • Sung-Kyun Jung;Jun-Young Jeon;Chan-kyu Kim;Chang-Sik Oh;Sung-Sik Kang;Chang-Young Oh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • This paper examines the quantification of uncertainty for welding residual stresses in dissimilar metal welds used in nuclear power plants. A mock-up of a dissimilar metal weld pipe, consisting of carbon and stainless steel pipes, was fabricated to measure the residual stress. A Round-Robin analysis was conducted by Korean institutions to assess the welding residual stress. The analysis was carried out in the second order, and the data obtained by each institution was evaluated based on the information provided. Using the Round-Robin results, the distribution of uncertainty in welding residual stresses among Korean institutions was evaluated. The quantification of uncertainty for Korean institutions was found to have a wider range compared to the distribution of welding residual stresses observed in overseas institutions. This study is considered useful in the establishment of comprehensive strategies for evaluating welding residual stress analysis methods used by domestic institutions.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

Application of Evidence Theory for the Evaluation of Mechanical Rock Mass Properties (암반설계정수 산정을 위한 증거이론의 적용)

  • Jung, Yong-Bok;Kim, Tae-Heok;Choi, Yong-Kun;SunWoo, Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.521-528
    • /
    • 2005
  • The evaluation process of rock mass properties intrinsically contains some uncertainty due to the inhomogeneity of rock mass and the measurement error. Although various empirical methods for the determination of rock mass properties were suggested, there is no way of integrating various information on rock mass properties except averaging. For these reasons, this research introduces evidence theory which can model epistemic uncertainty and yield reasonable rock mass properties through combining various information such as empirical equations, in-situ test results, and so on. Through the application of evidence theory to the real site investigation and in situ experiment results, an interval of deformation modulus, cohesion and friction angle of rock mass were obtained. The ratios between lower and upper bound of those properties ranges from 1.6 to 3.6. Numerical analyses of circular hole using the properties for TYPE-2 rock mass were carried out. The magnitude or size of plastic region and radial displacement in case of lower bound properties is about 4 times larger than that of upper bound properties.

  • PDF

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine (스팀터빈의 공력성능 평가를 위한 공기 상사실험)

  • Lim, Byeung-Jun;Lee, Eun-Seok;Yang, Soo-Seok;Lee, Ik-Hyoung;Kim, Young-Sang;Kwon, Gee-Bum
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

Evaluation of certainty and uncertainty for Intuitionistic Fuzzy Sets

  • Wang, Hong-Mei;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.259-262
    • /
    • 2010
  • Study about fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) were proposed, and analyzed. Unlike fuzzy set, IFSs contains uncertainty named hesistancy, which is contained in fuzzy membership function itself. Hence, designing fuzzy entropy is not easy because of ununified entropy definition. By considering different fuzzy entropy definitions, fuzzy entropy is designed and discussed their relation. Similarity measure was also presented and verified its usefulness to evaluate degree of similarity.

Uncertainty Analysis of Flow Measurements of Seom River Experimental Watershed (섬강시험유역의 유량측정에 대반 불확실도 해석)

  • Choi Hung Sik;Cho Min Sok;Kim Sang Ho;Park Jung Soo
    • KCID journal
    • /
    • v.11 no.2
    • /
    • pp.47-54
    • /
    • 2004
  • The flow measurements have been .carried out without the evaluation for data accuracy. For the reliable data acquisition, the experimental watershed has been operated and the uncertainty analysis for flow measurements and the developed rating curves are i

  • PDF

Discount Presentation Framing & Bundle Evaluation: The Effects of Consumption Benefit and Perceived Uncertainty of Quality (묶음제품 가격 할인 제시 프레이밍 효과: 지각된 소비 혜택과 품질 불확실성의 영향을 중심으로)

  • Im, Meeja
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.53-81
    • /
    • 2012
  • Constructing attractive bundle offers depends on more than an understanding of the distribution of consumer preferences. Consumers are also sensitive to the framing of price information in a bundle offer. In classical economic theory, consumers' utility should not change as long as the total price paid stays same. However, even when total prices are identical, consumers' preferences toward a bundle product could be different depending on the format of price presentation and the locus of price discount. A weighted additive model predicts that the impact of a price discount on the overall evaluation of the bundle will be greater when the discount is assigned to the more important product in the bundle(Yadav 1995). Meanwhile, a reference dependent model asserts that it is better to assign a price discount to a tie-in component that has a negative valuation at its current offer price than to a focal product that has a positive valuation at its current offer price(Janiszewski and Cunha 2004). This paper has expanded previous research regarding price discount presentation format, investigating the reasons for mixed results of prior research and presenting new mechanisms for price discount framing effect. Prior research has hypothesized that bundling is used to sell a tie-in component with an offer price above the consumer's reference price plus a focal product of the same offer price with reference price(e.g., Janiszewski and Cunha 2004). However, this study suggests that bundling strategy can be used for increasing product's attractiveness through the synergy between components even when offer prices of bundle components are the same with reference prices. In this context, this study employed various realistic bundle sets with same price between offer price and reference price in the experiment. Hamilton and Srivastava(2008) demonstrated that when evaluating different partitions of the same total price, consumers prefer partitions in which the price of the high-benefit component is higher. This study determined that their mechanism can be applied to price discount presentation formats. This study hypothesized that price discount framing effect depends not on the negative perception of tie-in component with offer price above reference price but rather on the consumers' perceived consumption benefit in bundle product. This research also hypothesized that preference for low-benefit discount mechanism is that perceived consumption benefit reduces price sensitivity. Furthermore, this study investigated how consumers' concern for quality in a price discount--a factor not considered in previous research--influences price discount framing. Yadav(1995)'s experiment used only one magazine bundle of relatively low quality uncertainty and could not show the influence of perceived uncertainty of quality. This study assumed that as perceived uncertainty of quality increases, the price sensitivity mechanism for assigning the discount to low-benefit will increase. Further, this research investigated the moderating effect of uncertainty of quality in price discount framing. The results of the experiment showed that when evaluating different partitions of the same total price and the same amount of discounts, the partition that discounts in the price of low benefit component is preferred to the partition that decreases the price of high benefit component. This implies that price discount framing effect depends on the perceived consumption benefit. The results also demonstrated that consumers are more price sensitive to low benefit component and less price sensitive to high benefit component. Furthermore, the results showed that the influence of price discount presentation format on the evaluation of bundle product varies with the perceived uncertainty of quality in high consumption benefit. As perceived uncertainty of quality gradually increases, the preference for discounts in the price of low consumption benefit decreases. Besides, the results demonstrate that as perceived uncertainty of quality gradually increases, the effect of price sensitivity in consumption benefit also increases. This paper integrated prior research by using a new mechanism of perceived consumption benefit and moderating effect of perceived quality uncertainty, thus providing a clearer explanation for price discount framing effect.

  • PDF

Challenges in Application of Remote Sensing Techniques for Estimating Forest Carbon Stock (원격탐사 기술의 산림탄소 축적량 추정적용에 있어서의 도전)

  • Park, Joowon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2013
  • The carbon-offset mechanism based on forest management has been recognized as a meaningful tool to sequestrate carbons already existing in the atmosphere. Thus, with an emphasis on the forest-originated carbon-offset mechanism, the accurate measurement of the carbon stock in forests has become important, as carbon credits should be issued proportionally with forest carbon stocks. Various remote sensing techniques have already been developed for measuring forest carbon stocks. Yet, despite the efficiency of remote sensing techniques, the final accuracy of their carbon stock estimations is disputable. Therefore, minimizing the uncertainty embedded in the application of remote sensing techniques is important to prevent questions over the carbon stock evaluation for issuing carbon credits. Accordingly, this study reviews the overall procedures of carbon stock evaluation-related remote sensing techniques and identifies the problematic technical issues when measuring the carbon stock. The procedures are sub-divided into four stages: the characteristics of the remote sensing sensor, data preparation, data analysis, and evaluation. Depending on the choice of technique, there are many disputable issues in each stage, resulting in quite different results for the final carbon stock evaluation. Thus, the establishment of detailed standards for each stageis urgently needed. From a policy-making perspective, the top priority should be given to establishinga standard sampling technique and enhancing the statistical analysis tools.

  • PDF