• Title/Summary/Keyword: Uncertainty Distribution

Search Result 769, Processing Time 0.025 seconds

EVALUATION OF THE UNCERTAINTIES IN THE MODELING AND SOURCE DISTRIBUTION FOR PRESSURE VESSEL NEUTRON FLUENCE CALCULATIONS

  • Kim, Yong-Il;Hwang, Hae-Ryong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.237-241
    • /
    • 2001
  • The uncertainties associated with fluence calculation at the pressure vessel have been evaluated for the Korean Next Generation Reactor, APR1400. To obtain uncertainties, sensitivity analyses were performed for each of the parameters important to calculated fast neutron fluence. Among the important parameters to the overall uncertainties, reactor modeling and core neutron source were examined. Mechanical tolerances, composition and density variations in the reactor materials as well as application of $r-{\theta}$ geometry in rectilinear region contribute to uncertainty in the reactor modeling. Depletion and buildup of fissile nuclides, instrument error related to core power level, uncertainty of fuel pin burnup, and variation of long-term axial peaking factors are main contributors to the core neutron source uncertainty. The sensitivity analyses have shown that the uncertainty in the fluence calculation at the reactor pressure vessel is +12%.

  • PDF

A Predictive Two-Group Multinormal Classification Rule Accounting for Model Uncertainty

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.477-491
    • /
    • 1997
  • A new predictive classification rule for assigning future cases into one of two multivariate normal population (with unknown normal mixture model) is considered. The development involves calculation of posterior probability of each possible normal-mixture model via a default Bayesian test criterion, called intrinsic Bayes factor, and suggests predictive distribution for future cases to be classified that accounts for model uncertainty by weighting the effect of each model by its posterior probabiliy. In this paper, our interest is focused on constructing the classification rule that takes care of uncertainty about the types of covariance matrices (homogeneity/heterogeneity) involved in the model. For the constructed rule, a Monte Carlo simulation study demonstrates routine application and notes benefits over traditional predictive calssification rule by Geisser (1982).

  • PDF

Investigation of the Sensitivity Depletion Laws for Rhodium Self-Powered Neutrorn Detectors (SPNDs)

  • Kim, Gil-Gon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • An investigation of the sensitivity depletion laws for rhodium SPNDs was performed to reduce the uncertainty of the sensitivity depletion laws used in Combustion Engineering (CE) reactors and to develop calculational tools that provide the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools developed in this work are computer programs for a time-dependent neutron flux distribution in the rhodium emitter during depletion and for a time-dependent beta escape probability that a beta particle generated in the emitter escapes into the collector. These programs provide the sensitivity depletion laws and show the reduction of the uncertainty by about 1 % compared to that of the method employed by CE in interpreting the signal into the local neutron flux. A reduction in the uncertainty by 1 % in interpreting the signal into the local neutron flux reduces the uncertainty tv about 1 % in interpreting the signal into the local power and lengthens the lifetime of the rhodium SPND by about 10% or more.

  • PDF

Causes of uncertainty in thermoelasticity measurements of structural elements

  • Marsili, Roberto;Rossi, Gianluca;Speranzini, Emanuela
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.539-548
    • /
    • 2017
  • Thermoelasticity is a contactless technique for measuring stress distributions in structural elements stressed by dynamic loads. This work describes the characteristics, analyzes the main causes of uncertainty and illustrates a series of operative methods for reducing its effects. More specifically, the effects of the angle of view between the thermographic camera and the surface of the object are studied, along with those due to the heat transmission by conduction between the various parts of the thing being measured as a function of the stress frequencies. The analyses, both theoretical and experimental, are aimed at defining the operational limits and optimal measurement and test conditions in relation to the measurement uncertainty that is considered tolerable in the specific application.

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

Analysis of dependence structure between international freight rate index and U.S. and China trade uncertainty (국제 해운 운임지수와 미국과 중국의 무역 불확실성 사이의 의존성 구조 분석)

  • Kim, Bu-Kwon;Kim, Dong-Yoon;Choi, Ki-Hong
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.4
    • /
    • pp.93-106
    • /
    • 2020
  • Trade is an important economic activity. In particular, since the establishment of the World Trade Organization (WTO), the scope of trade has been expanding due to events such as the entry of China into the WTO in 2001, the establishment of a multilateral trading system, mitigation and integration of trade barriers, and the establishment of the free trade agreement (FTA). Despite the expansion of the trade market, however, extreme events such as the 2008 global financial crisis, the 2016 Brexit, and the 2018 US-China trade war have had a direct negative impact on the trade market. Therefore, the present this study analyzed the dependence structure between the international shipping freight rate index, a variable representing trade activities, and the trade uncertainty between the US and China. The following is a summary of the analysis results. First, the US-Chinese trade policy uncertainty and international shipping freight rate index presented a Frank copula and rotated Clayton copula 270° distribution, respectively, showing the same distribution structure for each country. Second, the Kendall's tau correlation revealed a negative dependence between the international shipping freight rate index and US-Chinese trade policy uncertainty. The degree of dependence was greater in the combination of uncertainty in China's trade policy and international shipping freight rates. In other words, the dependence of global demand and trade policy uncertainty confirmed that China was stronger than the US. Finally, the tail dependence results revealed that the US-Chinese trade policy uncertainty and international shipping freight rates were independent of each other. This means that extreme events related to the trade policy uncertainty or international shipping rate index were not affected by each other.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Determination of Representative Shear Wave Velocity Profile for Rockfill Zone of CFRD Considering Uncertainty Caused by Spatial Variation of Material Property (국내 콘크리트 표면차수벽형 석괴댐(CFRD) 사력존의 전단파 속도 분포 결정(II): 물성치의 공간 변동성에 의한 불확실성이 고려된 CFRD 사력존의 1차원 전단파 속도 주상도의 결정)

  • Hwang, Hea-Jin;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This paper determines 1D shear wave velocity (Vs) distribution of rockfill zone of CFRD using Vs profile determined by the surface wave test. There exists uncertainty in the field test result because of a spatial variation of material property. The harmonic wavelet transform is used to evaluate the uncertainty of test result and generate random 1D Vs distributions which may exist in the rock fill zone. Through the statistical analysis of generated random Vs distributions, the representative 1D Vs distribution considering the uncertainty of test results is proposed for the rockfill zone of CFRD in Korea.

Uncertainty Evaluation of Color Measurement on Light Sources and Display Devices (광원 및 디스플레이 기기의 색특성 측정의 불확도 평가)

  • Park, Seong-Chong;Lee, Dong-Hoon;Kim, Yong-Wan;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.110-117
    • /
    • 2009
  • This work introduces the uncertainty evaluation formulation on color measurement of light sources and display devices, such as CIE 1931 (x, y) chromaticity, CIE 1960 (u, v) chromaticity, correlated color temperature, and distribution temperature. All the mentioned quantities are reduced from spectral data in the visible range, for which uncertainties are strongly correlated between different wavelengths. Using matrix algebra we have formulated the uncertainty propagation from the SI- traceable spectral irradiance standard to the individual color related measurement quantities taking the correlation between wavelengths into account. As a result, we have demonstrated uncertainty evaluation examples of 3 types of light sources: CIE illuminant A, LED white light, and LCD white light. This method can be applied to any other quantities based on spectral measurement such as solar irradiance, material color measurement, etc.

Uncertainty Analysis of a Pharmacokinetic Modeling for Inhalation Exposure of Benzene from the Use of Groundwater at Dwelling (거주지의 지하수사용에서 유래한 벤젠의 흡입노출에 대한 동적약리학 모델의 불확실성 분석)

  • 김상준;이현호;박지연;이유진;유동한;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • This study presents the result of uncertainty and sensitivity analysis of a pharmacokinetic model which describes the distribution and removal of benzene at each organ when an indivisual inhales indoor contaminated air with benzene originated from groundwater. The pharmacokinetic model simulates the distribution of benzene deposited in organs of human body through inhalation of contaminated indoor air as well as degradation-metabolism in liver. This study focused on the uncertainty problem induced from the use of the single values for blood flow, partition coefficient, degradation constant, volume, etc. of each organ which was due to a lack of knowledge about these parameters or their measurements. To solve this problem, uncertainty analysis on the pharmacokinetic model was conducted simultaneously which would help understanding the risk assessment associated with VOCs.