• Title/Summary/Keyword: Unbalanced output currents

Search Result 9, Processing Time 0.02 seconds

A Control Strategy to Obtain Sinusoidal Input Currents of Matrix Converter under Unbalanced Input Voltages

  • Nguyen, Thanh-Luan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.114-116
    • /
    • 2018
  • This paper presents a control strategy to achieve the balanced sinusoidal output currents, as well as sinusoidal input currents for the matrix converter (MC) under unbalanced input voltages. By regulating the modulation index of the converter according to the instantaneous input voltages, the output currents are kept balanced and sinusoidal. In order to obtain sinusoidal input currents, the input power factor angle should be dynamically calculated based on the positive and negative sequence components of the input voltages. This paper proposes a simple method to construct the expected input power factor angle without the complicated sequence component extraction of input voltages. Simulation results are given to validate the effectiveness of the proposed control strategy.

  • PDF

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

Performance Improvement of Grid-Connected Inverter Systems under Unbalanced and Distorted Grid Voltage by Using a PR Controller

  • Lee, Jong-Hyun;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.918-925
    • /
    • 2012
  • This paper proposes a control method for grid-connected inverter systems under unbalanced and distorted grid voltage. The proposed method can reduce the power ripple caused by the unbalanced condition and compensate for the low-order harmonics of the output currents caused by the distortion of grid voltage. To reduce the power ripple, our method replaces the two conventional PI controllers with one PR controllers in the stationary frame. PR controllers can implement selective harmonic compensation without excessive computational requirements; the use of these controllers simplifies the method. Both the simulated and experimental results agree well with the theoretical analysis.

Double Line Voltage Synthesis Strategy for Three-to-Five Phase Direct Matrix Converters

  • Wang, Rutian;Zhao, Yanfeng;Mu, Xingjun;Wang, Weiquan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 2018
  • This paper proposes a double line voltage synthesis (DLVS) strategy for three-to-five phase direct matrix converters. In the proposed strategy, the input and expected output voltages are divided into 6 segments and 10 segments, respectively. In addition, in order to obtain the maximum voltage transfer ratio (VTR), the input line voltages and "source key" should be selected reasonably according to different combinations of input and output segments. Then, the corresponding duty ratios are calculated to determine the switch sequences in different segment combinations. The output voltages and currents are still sinusoidal and symmetrical with little lower order harmonics under unbalanced or distorted input voltages by using this strategy. In addition, the common mode voltage (CMV) can be suppressed by rearranging some of the switching states. This strategy is analyzed and studied by a simulation model established in MATLAB/Simulink and an experimental platform, which is controlled by a DSP and FPGA. Simulation and experimental results verify the feasibility and validity of the proposed DLVS strategy.

Improving the Output Current of Matrix Converter under Abnormal Input Voltage Conditions using a Neural Network Compensator (입력 전원 외란 상황에서의 신경회로망 기반 전류 보상기를 이용한 매트릭스 컨버터의 출력 전류 개선)

  • Lee, Eun-Sil;Park, Ki-Woo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • Matrix converter is an energy conversion device of controlled power semiconductor switches that directly connects the three-phase source to the three-phase load. With no dc-link components for energy storage in the matrix converter the input current depends directly upon the load currents and the switch state of the converter. Therefore the unbalanced and distorted input voltages can result in unwanted output harmonic currents. This paper presents a current compensator based on neural network to improving output current quality for matrix converter under abnormal input voltage conditions. The effectiveness and feasibility of the proposed technique has been proven through numerical simulations and experimental tests.

A Simplified Modulation Strategy for Three-leg Voltage Source Inverter Fed Unsymmetrical Two-winding Induction Motor

  • Sinthusonthishat, Saliltip;Chuladaycha, Nontawat
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1337-1344
    • /
    • 2013
  • This paper presents a simplified modulation strategy for the three-leg VSI fed two-winding induction motor. The strategy provides independent unbalanced voltage control for the main and auxiliary windings. This make the motor can be reversed rotation through the range of motor speed operation without limitation of voltage boost of the auxiliary winding. To study the advantages of the proposed drive, the experimental results such as voltage stresses, hysteresis band of the currents in locus, and also acoustic noise levels of the three-leg VSI are compared with those of the conventional two-leg topology. The results obviously show that the proposed technique achieves superior performance compared with the traditional scheme in case of dramatic increase of DC bus utilization, effective reduction of harmonic voltages content, and also significant enhancement of motor efficiency.

An Integrated Compensation Algorithm for PCC Voltage Fluctuation and Unbalance with Variable Limit of Positive and Negative Sequence Currents

  • Im, Ji-Hoon;Song, Seung-Ho;Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.751-760
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation algorithm using a current limitation strategy for use in distributed generation (DG). The proposed strategy maintains the PCC voltage by prioritizing currents when an output current reference is larger than the current capacity of the power condition system (PCS) of the DG. With this strategy, the DG outputs the active current, reactive current, and the negative sequence current. The DG uses the reactive current for maintaining the PCC voltage within a normal range; the negative sequence current is used for reducing the PCC voltage unbalance. The proposed method was verified using PSIM simulation and experimental results.

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.

A Voltage Regulation System for Independent Load Operation of Stand Alone Self-Excited Induction Generators

  • Kesler, Selami;Doser, Tayyip L.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1869-1883
    • /
    • 2016
  • In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents.