• 제목/요약/키워드: Unbalanced load current

검색결과 113건 처리시간 0.028초

Performance Improvement of an Active Neutral Harmonic Suppressor System Under Unbalanced Load Conditions

  • Choi, Se-Wan;Jang, Min-Soo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.822-828
    • /
    • 2001
  • Three-phase four-wire electrical distribution systems are widely employed in manufacturing plants, commercial and residential buildings. Due to the nonlinear loads connected to the distribution system, the neutral conductor carries excessive harmonic currents even under balanced loading since the triplen harmonics in phase currents do not cancel each other. This may result in wiring failure of the neutral conductor and overloading of the distribution transformer. In response to these concerns, a cost-effective neutral current harmonic suppressor system has been proposed [6]. This paper proposes an improved control method for the harmonic suppressor system under unbalanced load conditions. The proposed control method compensates for only the harmonic components in the neutral conductor, and the zero-sequence fundamental component due to unbalanced loading is prevented from flowing through the harmonic suppressor system. This remedies overloading and power loss of the system. The experimental results on a prototype validate the proposed control approach.

  • PDF

3상 양방향 인버터의 계통전압 불평형 및 왜곡에 의한 계통전류 보상 (The Compensation of the Grid Current Distortion caused by the Grid Voltage Unbalance and Distortion for 3-Phase Bi-Directional DC to AC Inverter)

  • 양승대;김승민;최주엽;최익;송승호;이상철;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.228-234
    • /
    • 2012
  • This paper presents the algorithm of the compensation of the grid current distortion caused by the grid voltage unbalance and distortion in 3-phase bi-directional DC to AC inverter. Usually 3-phase grid system has unbalance and distortion because of connecting 1-phase and non-linear load with 3-phase load using same input node. Controlling 3-phase inverter by general method under the unbalanced and distorted grid voltage, the grid current has distortion. This distortion of the grid current cause the grid voltage distortion again. So, it need to control the grid current balanced and non-distorted, even the grid voltage gets unbalanced and distorted. There are some complex method to compensate the gird current distortion. it sugest simple method to solve the problem. PSIM simulation is used to validate the proposed algorithm.

Enhanced Proportional-Resonant Current Controller for Unbalanced Stand-alone DFIG-based Wind Turbines

  • Phan, Van-Tung;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.443-450
    • /
    • 2010
  • An enhanced control strategy for variable-speed unbalanced stand-alone doubly-fed induction generator-based wind energy conversion systems is proposed in this paper. The control scheme is applied to the rotor-side converter to eliminate stator voltage imbalance. The proposed current controller is developed based on the proportional-resonant regulator, which is implemented in the stator stationary reference frame. The resonant controller is tuned at the stator synchronous frequency to achieve zero steady-state errors in rotor currents without decomposing the positive and negative sequence components. The computational complexity of the proposed control algorithm is greatly simplified, and control performance is significantly improved. Finally, simulations and experimental results are presented to verify the feasibility and the robustness of the proposed control scheme.

Phase Shift Analysis and Phase Identification for Distribution System with 3-Phase Unbalanced Constant Current Loads

  • Byun, Hee-Jung;Shon, Sugoog
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.729-736
    • /
    • 2013
  • Power grids are large complicated networks in use around. An absolute phase value for a particular unknown-phase line at a local site should be identified for the operation and management of a 3-phase distribution network. The phase shift for a specific point in the line, as compared with a phase reference point at a substation, must be within a range of ${\pm}60^{\circ}$ for correct identification. However, the phase shift at a particular point can fluctuate depending on the line constants, transformer wiring method, line length, and line amperage, etc. Conducted in this study is a theoretical formulation for the determination of phase at a specific point in the line, Simulink modeling, and analysis for a distribution network. In particular, through evaluating the effects of unbalanced current loads, the limitations of the present phase identification methods are described.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter Under Line Voltage Unbalance Condition

  • Jeong Seung-Gi;Lee Dong-Ki;Park Ki-Won
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.808-815
    • /
    • 2001
  • The three-phase diode rectifier with a capacitive filter is highly sensitive to line voltage unbalance, and may cause significantly unbalanced line currents even under slightly unbalanced voltage condition. This paper presents an analysis of this 'unbalance amplification' effect for an ideal rectifier circuit without ac-and dc-side inductors. The voltage unbalance is modeled by introducing a deviation voltage superimposed on balanced three-phase line voltages. With proper approximations, closed-form expressions for symmetrical components of the line current and current unbalance factor are derived in terms of the voltage unbalance factor, filter reactance, and load current. The validity of analytical predictions is confirmed by simulation.

  • PDF

정지형 UPS의 병렬운전 제어 (The Parallel Operation Control of Static UPSs)

  • 민병권;원충윤
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

3상 4선식 부하설비의 전압, 전류 및 부하 불평형율 측정 분석 (The measurement & Analysis of Voltage, Current and Load Unbalance Factor at Three Phase Four Wire Load System)

  • 김종겸;박영진;이동주;이종한;정종호;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.28-30
    • /
    • 2005
  • This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. This system is composed of three one-phase transformer with each other capacity. Current unbalance factor is measured by the power quality measurement apparatus and compared by the load unbalance factor. Each phase has an impedance each other by the unbalanced load operation pattern and give rise to voltage unbalance.

  • PDF

중성선 전류 제거를 위한 3상 4선식 능동 전력 필터 (Neutral line current elimination method for Active power filter of three phase four-wire power system)

  • 민준기;김효성;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1489-1491
    • /
    • 2005
  • This paper proposes a design method using PQR instantaneous power theory on the active power filter, unbalanced nonlinear load condition and unbalanced source voltage condition in three-phase four-wire systems. For reduction of current harmonics and neutral current, the control structure including repetitive controller is proposed and controller gain is designed. For fully-digital implementation, ramp comparison PWM method was adopted. Simulation results verify good performance of the proposed current control strategy on the shunt APFs.

  • PDF

3상 비선형 부하시 중성선 전류 해석 (Neutral Line Current Analysis in Three-phase Nonlinear Load Condition)

  • 민완기;김남오;김병철;전형석;신석두;김형곤;민준기;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 정기총회 및 학술대회 전문대학교육위원
    • /
    • pp.109-109
    • /
    • 2008
  • Neutral line current is analyzed by the neutral line CF in nonlinear load balanced and unbalanced conditions. The worst nonlinear load condition is nonlinear balanced load condition. and It is below CFNL=1.194 that a neutral line current could not excess the rated value.

  • PDF

3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구 (A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation)

  • 이근준;황시돌;이현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF