• Title/Summary/Keyword: Unbalanced currents

Search Result 105, Processing Time 0.02 seconds

Robust Circulating Current Control in MMC Under the Unbalanced Voltage Condition (불평형 전압 조건에 강인한 모듈형 멀티레벨 컨버터의 순환전류 억제기법)

  • Moon, Ji-Woo;Park, Jung-Woo;Kang, Dae-Wook;Kim, Jang-Mok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.996-997
    • /
    • 2015
  • This paper proposes parameter design principle of the sub-module capacitance, Arm inductance and a control method to reduced the circulating currents in modular multilevel converter(MMC) under unbalanced voltage conditions. Under balanced voltage conditions, only negative-sequence circulating currents exist. Consequently, the conventional method has considered only negative-sequence circulating currents in MMC. However, under unbalanced voltage conditions, there are positive-sequence, zero-sequence and negative-sequence circulating currents in MMC. Thus, under unbalanced voltage conditions, a control method should consider these all components. This study proposes the control method to reduced the circulating currents under the unbalanced voltage.

  • PDF

STATCOM Control for Balancing the Unbalanced Loads (불평형 부하의 평형화를 위한 STATCOM 제어)

  • Im, Su-Saeng;Lee, Eun-Ung;Kim, Hong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.522-528
    • /
    • 2000
  • In this paper, a static synchronous compensator(STATCOM), which in general compensates reactive power, is proposed in order to balance the unbalanced loads. Reference values for the compensation of the unbalanced loads currents are determined by 3-phase circuit analysis result. Also the STATCOM control unit is designed considering the proposed compensation scheme for the unbalanced loads. As a result, the effectiveness of the STATCOM for balancing the load currents is verified by computer simulations.

  • PDF

Control of Circulating Current in Modular Multilevel Converter under Unbalanced Voltage using Proportional-Resonant Controller

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.143-144
    • /
    • 2016
  • The circulating current control within the phase legs is one of the main control objectives in a modular multilevel converter (MMC) under different operating conditions. This paper proposes a control strategy of circulating currents in the MMC under unbalanced voltage by using a proportional-resonant (PR) controller. Under the unbalanced voltage, the circulating currents in the MMC consists of three components such as positive-sequence, negative-sequence, and zero-sequence circulating currents. With the PR controller, all components of the circulating current will be directly controlled in the stationary reference frame without decomposing into positive- and negative-sequence components. Thus, the ripples in the circulating currents and the DC current are suppressed under the unbalanced voltage. The effectiveness of the proposed method is verified by simulation results based on PSCAD/EMTDC simulation program.

  • PDF

A Control Strategy to Obtain Sinusoidal Input Currents of Matrix Converter under Unbalanced Input Voltages

  • Nguyen, Thanh-Luan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.114-116
    • /
    • 2018
  • This paper presents a control strategy to achieve the balanced sinusoidal output currents, as well as sinusoidal input currents for the matrix converter (MC) under unbalanced input voltages. By regulating the modulation index of the converter according to the instantaneous input voltages, the output currents are kept balanced and sinusoidal. In order to obtain sinusoidal input currents, the input power factor angle should be dynamically calculated based on the positive and negative sequence components of the input voltages. This paper proposes a simple method to construct the expected input power factor angle without the complicated sequence component extraction of input voltages. Simulation results are given to validate the effectiveness of the proposed control strategy.

  • PDF

Unbalanced Characteristics of the Superconducting Fault Current Limiters with a Single Line-to-ground Fault (1선 지락사고에 대한 초전도한류기의 불평형 특성)

  • Choi, Hyo-Sang;Lee, Na-Young;Lee, Sang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.851-855
    • /
    • 2005
  • We investigated the unbalanced characteristics of the superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased about 6 times of transport currents after the fault onset but was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unbalanced rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unbalanced rates of currents were noticeably improved within one cycle after the fault onset. We calculated the zero phase currents for a single line-to-ground fault using the balanced component analysis. The positive sequence resistance was reduced remarkably right after the fault onset but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase balanced state in about 60 ms after the fault onset at the three-phase system.

One-Cycle Control Strategy for Dual-Converter Three-Phase PWM Rectifier under Unbalanced Grid Voltage Conditions

  • Xu, You;Zhang, Qingjie;Deng, Kai
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.268-277
    • /
    • 2015
  • In this paper, a dual-converter three-phase pulse width modulation (PWM) rectifier based on unbalanced one-cycle control (OCC) strategy is proposed. The proposed rectifier is used to eliminate the second harmonic waves of DC voltage and distortion of line currents under unbalanced input grid voltage conditions. The dual-converter PWM rectifier employs two converters, which are called positive-sequence converter and negative-sequence converter. The unbalanced OCC system compensates feedback currents of positive-sequence converter via grid negative-sequence voltages, as well as compensates feedback currents of negative-sequence converter via grid positive-sequence voltages. The AC currents of positive- and negative-sequence converter are controlled to be symmetrical. Thus, the workload of every switching device of converter is balanced. Only one conventional PI controller is adopted to achieve invariant power control. Then, the parameter tuning is simplified, and the extraction for positive- and negative-sequence currents is not needed anymore. The effectiveness and the viability of the control strategy are demonstrated through detailed experimental verification.

Digital Negative Sequence Relay Algorithm for Detection of Unbalanced State in a Generator (발전기의 불평형 검출을 위한 디지털 역상 계전 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • There are conditions that can be unbalanced three phase currents in a large generator by untransposed lines, unbalanced loads, unsymmetrical faults, and open phases. The unbalanced conditions can producing negative sequence components of current that induce two times frequence current in the surface of the rotor, the retaining rings, the slot wedges in the field windings. These rotor currents make the rotor rapidly overheat, so the rotor can cause substantial damage in a very short time. This paper presents the digital negative sequence relay algorithm for unbalanced protection in a generator. The proposed algorithm was tested by using collected current signals on PSCAD/EMTDC considering a hydro turbine based generator control system. It can be seen that the proposed relaying by negative sequence current is useful for detection of unbalanced state of large generator.

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

An Improved Control Approach for DSTATCOM with Distorted and Unbalanced AC Mains

  • Singh, Bhim;Solanki, Jitendra
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 2008
  • This paper presents a new control approach of DSTATCOM (distribution static compensator) for compensation of reactive power, unbalanced loading and harmonic currents under unbalanced non-sinusoidal ac mains. The control of DSTATCOM is achieved using Adaline based current estimator based on LMS algorithm to maintain source currents real and undistorted. The dc bus voltage of voltage source converter (VSC) working as DSTATCOM is maintained at constant voltage using a proportional-integral (PI) controller. The DSTATCOM system alongwith proposed control scheme is modeled in MATLAB to simulate the behavior of the system. The practical implementation of the DSTATCOM is carried out using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. Simulated and implementation results are presented to demonstrate the effectiveness of the DSTATCOM with Adaline based control to meet the severe load perturbations with different types of loads (linear and non-linear) under distorted and unbalanced AC mains.

Compensation of Unbalanced Phase Currents in Interleaved Bi-directional Converter with DC Link Current Sensed (직류링크 전류를 이용한 인터리브드 양방향 컨버터의 상전류 불균형 보상 방법)

  • Han, Jungho;Choi, Yuhyon;Song, Joongho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a compensation method of unbalanced phase currents in interleaved bi-directional converters. Phase currents in interleaved bi-directional converter are apt to be unbalanced due to circuit parameter error and switch operation difference. This problem causes the switch element failure and the reduced efficiency of the converter. Therefore, it is necessary that a certain balance control algorithm is provided in interleaved bi-directional converter system. In this paper, a balance control algorithm based on the circular chain control method is proposed. Further, in order to reduce the number of phase current sensors, this paper shows a simple method in which phase currents can be extracted indirectly through a DC-link current sensor in both charging and discharging modes. The validity and the effectiveness of the proposed phase currents balance control algorithm are illustrated through the simulation results.