• Title/Summary/Keyword: Unbalanced Moment

Search Result 58, Processing Time 0.021 seconds

Motion Adjustment for Dynamic Balance (동적 균형을 위한 동작 변환)

  • Tak, Se-Yun;Song, O-Yeong;Go, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.5 no.2
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a new algorithm about motion adjustment for dynamic balance. It adjusts an unbalanced motion to an balanced motion while preserving the nuance of original motion. We solve dynamic balancing problem using the zero moment point (ZMP) which is often used for controlling the balance of biped robot. Our algorithm is consists of four steps. First, it fits joint angle data to spline curves for reducing noise. Second, the algorithm analyzes the ZMP trajectory so that it can detects the dynamically-unbalanced duration. Third, the algorithm project the ZMP trajectory into the supporting area if the trajectory deviates from the area. Finally, the algorithm produces the balanced motion that satisfies the new ZMP trajectory. In this step, the constrained optimization method is used so that the new motion keeps the original motion characteristics as much as possible. We make several experiments in order to prove that our algorithm is useful to add physical realism to a kinematically edited motion.

  • PDF

A Study on Balanced-Type Oscillating Mole Drainer (II) (Model Test For Vibration) (평형식진동탄환암거천공기의 연구(II) -모수실험 : 진동에 대하여-)

  • 김용환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3962-3969
    • /
    • 1975
  • 1. When the frame of the experimental apparatus was directly fixed on the platform, result from the spectrum density analysis showed that the generated vibration frequecy of the system was nearly-same as the system's own characteristic vibration frequency, 80Hz, in the case of the forcing vibration frequency was 7.5 to 22.5Hz. The reduction ratio of acceleration by balanced type model compare to non-balanced type one was 26.66 percent. 2. When the frame of experimental apparatus was fixed on the platform with putting a shock absorbing rubber between the frame and the platform, the generated vibration frequency of the system was same as forcing vibration frequency. When either frequency or the amplitude of the forcing vibration was increased, the acceleration ratio was increased too. The average reduction ratio was resulted 44.77 per cent. It was concluded that this method of acceleration measurement(the method using a shock absorbing rubber) was a reaonable method, because actual machine will work under such condition. As the vibration frequency and aptitude were increased, the absolute magnitude of acceleration was increased. 3. unbalanced rotating parts, and unbalanced moment of inertia of links were supposed to be causing factors of residual vibration in spite of using the balanced type oscillating mole drainer. This fact suggested that the attachment of the counter weight on the rotating parts which satisfy the condition mw$.$rw=m0e, was necessary. And also, it was expected that the shock absorbing effect could be improved by putting the shock absorbing materials between the moving parts and their supports.

  • PDF

Dynamic Characteristics of the Reciprocating Cutter-bar of Combine Harvester(I) (콤바인 예취장치(刈取裝置)의 절단현상(切斷現象) 및 동적특성(動的特性)에 관한 연구(硏究)(I) -왕복동(往復動) 예취장치(刈取裝置)의 동적특성(動的特性)-)

  • Chung, C.J.;Lee, S.B.;Noh, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.163-174
    • /
    • 1994
  • This study was conducted to investigate the dynamic motion of knife drive system of combine harvester. A computer program was developed to simulate the dynamic motion of the knife drive linkage and its algorithm was evaluated through experiments. The results are summarized as follows : 1. The theorectical horizontal (the direction of knife's reciprocating motion) reaction forces at the supporting point of rocker arm and crank arm were changed in the similar sinusoidal trends with the measured reaction forces. 2. The maximum values of shaking moment and reaction force per one revolution of crank arm followed polynomial trends as the rotational speed of crank shaft increased. The unbalanced force acting on the driving system increased at high speed. Therefore, the rotational speed of crank shaft should be maintained in proper range at increased forward speed to decrease vibration of the knife drive system. 3. The added mass to the crank arm increased the dynamic unbalanced force at the supporting point of rocker arm. It counterbalanced the reaction force at the supporting point of crank arm.

  • PDF

Seismic design of chevron braces cupled with MRF fail safe systems

  • Longo, Alessandra;Montuori, Rosario;Piluso, Vincenzo
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this paper, the Theory of Plastic Mechanism Control (TPMC) is applied to the seismic design of dual systems composed by moment-resisting frames and Chevron braced frames. The application of TPMC is aimed at the design of dual systems able to guarantee, under seismic horizontal forces, the development of a collapse mechanism of global type. This design goal is of primary importance in seismic design of structures, because partial failure modes and soft-storey mechanisms have to be absolutely prevented due to the worsening of the energy dissipation capacity of structures and the resulting increase of the probability of failure during severe ground motions. With reference to the examined structural typology, diagonal and beam sections are assumed to be known quantities, because they are, respectively, designed to withstand the whole seismic actions and to withstand vertical loads and the net downward force resulting from the unbalanced axial forces acting in the diagonals. Conversely column sections are designed to assure the yielding of all the beam ends of moment-frames and the yielding and the buckling of tensile and compressed diagonals of the V-Braced part, respectively. In this work, a detailed designed example dealing with the application of TPMC to moment frame-chevron brace dual systems is provided with reference to an eight storey scheme and the design procedure is validated by means of non-linear static analyses aimed to check the actual pattern of yielding. The results of push-over analyses are compared with those obtained for the dual system designed according to Eurocode 8 provisions.

Moment-Rotation Relationship and Effective Stiffness of Flat Plates under Lateral Load (횡하중을 받는 플랫플레이트의 모멘트-변형각 곡선과 유효강성)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.856-865
    • /
    • 2003
  • Current design provisions and guide for performance-based design do not accurately evaluate seismic performance of flat plate system. In the previous companion studies, parametric studies using nonlinear finite element analyses were performed to investigate behavior of the flat plate, and based on the numerical results, design methods that can predict the bending moment-carrying capacity and the corresponding deformability of the flat plate was developed. In the present study, a generalized moment-rotation relation of the flat plate was developed based on the previous studies and the numerical analyses. The proposed method was verified by the comparisons with existing experiments. In addition, the effective stiffness of the flat plate corresponding to 0.2 percent of lateral drift that is generally regarded as the serviceability limit was proposed, so as to evaluate conveniently deflection of the structure subject to wind load.

Effect and Reduction Method of Rotating Unbalance Mass on Vibration Characteristics of Front Axle (회전 불균형 질량이 Front Axle 진동특성에 미치는 영향 및 저감 방안)

  • Park, Tae-Wone;Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won;Kim, Sang-Shik;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.165-169
    • /
    • 2007
  • The purpose of this study is to investigate the effect of rotating unbalance mass on vibration characteristics of the front axle. The power-train systemof the vehicle is composed of several rotating parts. These component parts should be properly balanced by the balancing machine, however,sometimes these have the unbalance mass which causes the critical vibration in the vehicle. Therefore, this study suggests the vibration improvement method based on reducing the unbalance mass through changing the assembly type between the companion flange and the constant velocity joints. In addition, the way to increase the inertia moment of the companion flange was proposed.

A Study on Whirling, Tilting, Flying motion of 3.5 inch FDB spindle system (3.5인치 FDB 스핀들 시스템의 Whirling, Tilting, Flying motion에 관한 연구)

  • 오승혁;이상훈;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.579-585
    • /
    • 2003
  • This paper investigates the whirling, tilting and flying motion of a HDD spindle system supported by FDB experimentally. Experimental setup is built to measure the flying, whirling and tilting motion of the HDD spindle system, and three capacitance probes fixed on the xyz-micrometers measure the displacement of a HDD spindle system in the xyz-directions. This research shows that the tilting and whirling motion is mostly dependent on the centrifugal force and the gyroscopic moment due to the unbalanced mass of a HDD spindle. It also shows that the rotating HDD spindle starts to float to the equilibrium position in the z-direction until the weight of the rotating spindle is equal to the supporting pressure generated in the upper and lower thrust bearing.

  • PDF

Seismic Design Provisions and Revisions to the Guides for RC Flat Plate Systems in the US (미국에서의 RC무량판 내진설계기준과 개정 방향)

  • Kang, Thomas H.K.;Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.25-36
    • /
    • 2008
  • Seismic design of reinforced concrete flat plate structures is often complicated as it deals with three dimensionality and continuous spans, and mostly material complexity and reinforcement variation. A great degree of uncertainty in such structural and material properties is thus inherent in the RC flat plate systems, and hinders simplification of the design process in terms of slab flexure, unbalanced moment transfer at a slab-column connection, and punching shear. For these reasons, there have been substantial changes and updates in building codes relating to flat plates and slab-column connections over a handful of decades. Also, for the same reason, some of codes never have been revised. As a consequence of nonsimultaneous development of each provision, it tends to confuse structural engineers when using a mixture of all different US code provisions. In this paper, in the step-by-step logical order, seismic design of the RC flat plate systems is re-organized and clarified to make it easier to apply. Furthermore, recent changes or proposed changes are introduced, and are explained as to how it will apply in practice.

Evaluation of Structural Performance of Flat Plate-Column Interior Connections with Folded Bend Shear Reinforcement (밴드형 전단보강근으로 보강된 무량판 슬래브 내부접합부의 구조 거동 평가)

  • Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young;Bang, Jong-Dae;Jun, Myoung-Hoon;Cho, Gun-Hee
    • Land and Housing Review
    • /
    • v.4 no.4
    • /
    • pp.371-382
    • /
    • 2013
  • This study performs an experimental investigation to evaluate the behavior of RC flat plate interior joints specimens. Three 60 percent scale Flat Plate interior specimens assemblies representing a portion of a Flat Plate Apartment Structural System subjected to simulated seismic loading (unbalanced moments) under constant axial load were tested, including one specimens with ordinary shear reinforcement and two specimens with folded bend type shear reinforcement. Test results are shown that (1) the design code KBC 2009 is accurate estimate the behavior of specimens. (2) Two types shear reinforcement have a similar structural behavior, but construction work of rebar with folded bend type shear reinforcement is easier than that of ordinary shear reinforcement. (3) In moderate seismic region, RC Flat Plate interior joint with folded bend type shear reinforcement is apply to structural design of Flat Plate.

Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS (DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF