• Title/Summary/Keyword: Unbalance vibration

Search Result 309, Processing Time 0.023 seconds

Identification of Runout. Unbalance and Eddy Current Effect in Active Magnetic Bearing System Using LMS Algorithm (LMS 알고리즘을 이용한 전자기 베어링계에서의 런아웃, 불균형력 및 와전류 효과 규명)

  • 김하용;김승종;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.172-177
    • /
    • 2001
  • This paper proposes an adaptive feedforward controller (AFC) based on LMS for periodic disturbance rejection in active magnetic bearing system. The proposed controller does not alter the stability and robustness of the existing AMB system. It is shown that the control delay due to the eddy current as well as runout and unbalance can be identified and compensated using the estimated displacement from the measured magnetic flux. The simulation results confirm that the proposed scheme successfully identifies and compensates for the runout, unbalance and eddy current effect, leading to a high-precision magnetic bearing system.

  • PDF

A Study on the Active Balancing for High-Speed Rotors (I): Development of the Active Balancing System (고속 회전체의 능동 밸런싱에 관한 연구 (I): 능동 밸런싱 장치의 개발)

  • Kim, Jong-Soo;Park, Hyun-Kyu;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.140-146
    • /
    • 2002
  • High speed rotating machines can be very sensitive to rotating mass unbalance that is a major source of harmful vibration for many types of rotating machinery. So, the balancing procedure is needed for all high-speed rotating system. To save the time and cost of off-line balancing, many researchers have developed the on-line balancing devices and methods. In this paper, an active balancing device, which is an electro-magnetic type, is developed and the active balancing algorithm using influence coefficient method is also proposed. The active balancing experiment for flexible rotors during operation is performed by an active balancing device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.

Analysis on the characteristics the induction motor under mechanical unbalance of a rotor (유도형 모터 회전자의 기계적 불형형 특성해석)

  • Jang, S.M.;Lee, S.L.;Seo, J.H.;Jeong, S.S.;Kim, K.J.;Park, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.296-298
    • /
    • 1998
  • The mechanical unbalance of the rotor in motors generate vibrations and make its shortened their life, therefore, it is important that search for a cause of the vibration in the point of economics. In this paper, to reduce the vibration we will analyse the unbalance magnetic pull in induction motor. Namely, the electromagnetically generated forces, the airgap flux density distribution in a single phase induction motor is calculated by analytical and numerical method.

  • PDF

Comparison of vibration and Noise Characteristics for Reciprocating Air Compressor through the Change of Crankshaft Parameters (크랭크샤프트의 형상 변경을 통한 소형 왕복동 공기압축기의 진동 및 소음 특성 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Aminudin, Bin Abu;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.530-533
    • /
    • 2005
  • Recently, modern reciprocating air compressors tend to be smaller and lighter. But, as the development of performance, they have many problems for noise and vibration. For this reason, many researches are processing for the reduction of noise and vibration by arranging cylinders with V/W type. Especially, noise and vibration problems of reciprocating air compressor cause a rotating unbalance of crankshaft, so it needs a change of crankshaft parameters appropriately. Hence in this study, we changed crankshaft parameters to solve the rotating unbalance and compared results in order to verify the noise and vibration reduction between new and original air compressor. According to modify a crankshaft parameter, the improvements of noise and vibration were showed results of spectrum measured at selected points of the air compressor crankshaft housing and sound intensity contours measured at a belt left side, table that figure out characteristics of noise. Furthermore, we analyzed objective sound quality metrics with recording data of systems. The results showed that, the new design has improved the level of the first harmonic of vibration displacement, noise and objective sound quality metrics.

  • PDF

Characteristics Analysis of Induction Motor by Operation of Non-lineal Loads (비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.147-153
    • /
    • 2006
  • Voltage unbalance will be generated by the load unbalance operation such as combination operation of single & three phase load and current unbalance will be more severe by the deteriorated voltage quality. Under the these unbalance conditions, all power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. it may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration. This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system by the unbalance and harmonic components. It was able to confirm that the number of torque pulsation decreased and torque ripple values increased by the harmonics that reduction was difficult by five harmonics filters at additional driving time of single-phase non-linear load.

  • PDF

Precise Measurement of Unbalance Moment Using 3-Point Weighing Method (3점 측정방식을 사용한 불평형 모멘트의 정밀 측정)

  • Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.57-63
    • /
    • 2006
  • Gravitational centers of precise spinning components must coincide with the rotational centers of those to reduce noise and vibration and to extend those lift as well. Therefore quality control should be performed in the manufacturing process, in which the unbalance moments are accurately measured. In this paper 3-point weighing method is adopted to measure the unbalance moment of small-sized precision spinning elements using electronic scales with 0.1 mg resolution. Firstly methods to eliminate the fixture error and to reduce the effects of frictional force that is known as side effect, are proposed. A measuring system is developed and various experiments are performed to verify the proposed approach. The measured and calculated values are analysed in statistical methods, and this provides the errors of the measuring system. The results show that the proposed theory and test procedures gives reliable unbalance moments and gravitational centers.

Analysis of the Dynamic Behavior of a CNC Automatic Lathe Spindle System (CNC 자동선반 스핀들시스템의 동적 거동 해석)

  • Kim, T.J.;Koo, J.H.;Lee, S.B.;Kim, M.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2009
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. Therefore, it is important to recognize the effect of unbalance mass. This paper presents analysis of dynamic behavior of a high speed spindle with a built-in motor. The spindle is supported by the angular contact ball bearings and the rotor is fixed at the middle of spindle. The spindle used in CNC automatic lathe has been investigated using combined methodologies of finite elements and transfer matrices. The Houbolt method is used for the integration of the system equations and the dynamic behavior of spindle is obtained considering unbalance mass of rotor. Results show that increasing rotational speed of spindle magnifies the whirl responses of spindle seriously. Also the whirl responses of spindle are affected by the other factors such as unbalance mass and bearing stiffness.

A Study on Rotating Balancing of High-speed spindle by using $ADAMS^(R)$ ($ADAMS^(R)$를 이용한 초고속 스핀들의 회전 밸런싱 (Balancing)에 대한 연구)

  • Cho Y.D.;Chung W.J.;Lee C.M.;Yoon S.H.;Whang Y.K.;Park G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.560-563
    • /
    • 2005
  • According to the demand of the high productivity, the interest of manufacturing skills is growing in industrial society. Especially the high-speed spindle in machining center becomes important these days. The rotating accuracy of the spindle in machining center concerns the centrifugal force. In detail explaining, it is influenced by the unbalance mass. In this study, we could find changes of the vibration caused by condition (increased mass, rotating speed, position) of unbalance mass and verify it using a software - $ADAMS^(R)$ With this study, it will help workers on the spot solve the problems concerning unbalance mass.

  • PDF

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

Analysis of Rotordynamic Design Characteristics and Vibration Reduction of an Air Turbo Compressor for Oxygen Plant (산소공장 공기터보압축기(ATC)의 회전체동역학 설계특성 분석 및 진동저감)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.43-48
    • /
    • 2010
  • In this study rotordynamic characteristics of an air turbo-compressor (ATC) used in oxygen plant are analyzed and its operating-speed balancing is performed to solve the vibration trouble caused by rotor unbalance. Three dimensional model of the ATC rotor is completed and then analytical FE (finite element) model, which is verified by experimental modal testing, is developed. A rotordynamic analysis includes the critical map, Campbell diagram, and unbalance response, especially considering the pedestal housings supporting tilting pad bearings. A test run of operating-speed, using tilting-pad bearing of actual use, showed that the vibration level increased very sharply as approaching the rated speed. The operating-speed balancing specified by API 684 was carried out by using influence coefficient method. The results showed that the vibrations at the bearing pedestal housings represented good levels of 0.1 mm/s. From the test run and operating-speed balancing, the analytical results, that is, critical speeds are in good agreement with the test results and unbalance responses introducing the correction masses are similar to the as-is test responses in its aspect.