• Title/Summary/Keyword: Ultraviolet intensity

Search Result 196, Processing Time 0.031 seconds

Color Evaluation of Red GinBeng Extract and its Charges during teat treatment (열처리가 홍삼엑기스의 색상변화에 미치는 영향)

  • 최진호;김우정;박길동;성현순
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.165-174
    • /
    • 1980
  • The concentrated red ginseng extract (RGE) which was prepared from water extract of red ginseng tails was investigated for its changes in color intensity, sugar contents and during storage at various temperatures. In order to evaluate the color of RCE, a spectrophotometric measurement in ultraviolet and visible range was applied. The concentrated RGE was divided into three fractions of aqueous, butanol and benzene layers. It was found that : (1) Increase in RCE color during heat treatment was considered to be due to nonezymatic browning reaction. Water soluble layer showed approximately 100 times higher color intensity than those of organic solvent layers (2) The RCE stored at 8$0^{\circ}C$ showed an increase in fructose and glucose content while a rapid decrease was resulted at 10$0^{\circ}C$. (3) A rapid increase in absorbances at 400 and 460nm was shown at 90 and 10$0^{\circ}C$ after an initial induction period and slowed down after 50 hours . (4) A significant relationship was found between decrease in sugar content and increase in color intensity. (5) Absorbance ratio of 400nm/460nm indicated that benzene layer has about two times higher value in violet color than those of butanol and aqueous layers.

  • PDF

THE CHROMOSPHERIC ACTIVITY ON V711 TAU (V711 TAU의 채층활동)

  • V771TAU의채층활동
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.59-66
    • /
    • 1997
  • The relationship between Mg II emission line and light variation of V711 Tau has been derived to investigate the chromospheric activity on V711 Tau. First, a shape of an optical light curve was compared with that of ultraviolet constructed from the IUE low resolution spectra. Second, the intensities of Mg II k emission lines have been reduced from IUE high resolution spectra. The intensity of Mg II k line was compared with brightness of the UV light curve at given phase. The Mg II line intensity is maximum at the phase $O.^{P}4$ where the light is minimum. The evidence of chromosperic activity is indicated by the intensity variation of the MgII emission line with orbital phase for V711 Tau.

  • PDF

Characteristics of Photo-conversion Glass with $Eu^{3+}$ and Its Use 1 (Glass Production and Photo-conversion Characteristics) ($Eu^{3+}$가 첨가된 광변환 유리의 특성과 효과연구 1(유리의 제조와 특성))

  • Chung, Hun-S.;Ahn, Yang-K.;Kil, Dae-S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.44-50
    • /
    • 2002
  • Photosynthesis of plants is effective in the range of 550 to 700 nm of the wavelength of solar irradiation. If the conversion of ultraviolet to the above mentioned region is possible, the photosynthesizing ability is expected to be enhanced. $Eu^{3+}$ doped soda-lime bulk and $TiO_2-SiO_2$ sol-gel coated glasses were prepared and their spectroscopic properties were studied. The absorption and emission spectra for the specimens were measured with the changes of wavelength and Eu ion concentration in the range of the wavelength of 300 to 700nm. The transmittance intensity of visible light through the bulk glass and the coated one was unchanged with the addition of Eu element. The emission spectrum intensity of $Eu^{3+}$ was found to be the maximum at 618 nm which is a transition of $^5DO{\rightarrow}^7F_2$. Additionally, it was shown that the intensity was linearly increased up to 10% of the Eu concentration.

CaxSr2-xSiO4:Eu2+ Green-emitting Nano Phosphor for Ultraviolet Light Emitting Diodes

  • Kim, Jong Min;Choi, Hyung Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.249-252
    • /
    • 2014
  • The aim of this work is to investigate the effect of $Ca_xSr_{2-x}$ and activator on the structural and luminescent properties of green-emitting $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ nano phosphor. Using urea as fuel and ammonium nitrate as oxidizer, $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ has been successfully synthesized, using a combustion method. The particles were found to be small, spherical and of round surface. SEM imagery showed that the phosphors particles are of nanosize. The $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ emission spectrum for 360 nm excitation showed a single band, with a peak at 490 nm, which is a green emission. The highest luminous intensity was at $1,000^{\circ}C$, which was obtained when the $Eu^{2+}$ content (y) was 0.05. The results support the application of $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). Characteristics of the synthesized $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and photoluminescence (PL) detection.

UV Sensitivity of Korean Skin and The Effects of Factors affecting SPF Determination (한국인 피부의 자외선 감수성과 SPF 측정치에 미치는 인자의 영향)

  • 이병곤
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-17
    • /
    • 1991
  • Multiport-600 Solar SimulatorR is one of the most recent and convenient in-strument for evaluation of sun protection factor(SPF). In this study, we examined the practicability of the SPF determining system using Multiport -600 and the effects of several factors-light sources, seasons and experimental animals-on the minimal erythema dose(MED) and SPF. We also tested the UV sensitivity according to the sites of Korean people, And the ultraviolet radiation reaching the earth's surface In Seoul have been observed for one year. As a result of this study, the determinig system for SPF using Multiport-600 was proved to be a good system in accuracy and time-saving. The biological activity of fluorescence UV lamp of PUVA-800R was significantly higher than natural light or solar simulator with Xe arc lamp, and the determined MED became lower in inverse proportion to room temperature rise. Skin sensitivity by ultraviolet adiation was hights. in order \circled1 back \circled2 inns, upper arm \circled3 outer upper arm \circled4 foream. We also observed that UV radiation intensity was highest at noon in july and 1 sun burn unit(MED) was 28 minutes at that time.

  • PDF

Influence of Dust Environment on the Detection Capability of Ultraviolet Flame Detector (UV 화염감지기의 감지성능에 대한 분진분위기의 영향)

  • Kim Hong;Hu Rui
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.113-119
    • /
    • 1997
  • The detection capability of UV flame detector in dust environment would be impaired. In this study, an experiment was conducted, in an effort to further understand the behavior of UV flame detector and to evaluate its detection capability in industry dust environment. Detergent powder, coal powder and dry extinguishing agent were selected as dust sources. Flaming sources include propane and gasoline flame. Experiment results indicate that dust can cause remarkable attenuation of UV flame radiation. The concentration of dust and the length of air layer where dust dispersed determine the reduction of radiation intensity. On the other hand, the attenuation of UV radiation also depends on the chemical and Physical properties of dust.

  • PDF

Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis (고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성)

  • Ju Seo Hee;Koo Hye Young;Kim Do Youp;Kang Yun Chan
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.

Improved Margin of Absorber Pattern Sidewall Angle Using Phase Shifting Extreme Ultraviolet Mask (위상변위 극자외선 마스크의 흡수체 패턴의 기울기에 대한 오차허용도 향상)

  • Jang, Yong Ju;Kim, Jung Sik;Hong, Seongchul;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.32-37
    • /
    • 2016
  • Sidewall angle (SWA) of an absorber stack in extreme ultraviolet lithography mask is considered to be $90^{\circ}$ ideally, however, it is difficult to obtain $90^{\circ}$ SWA because absorber profile is changed by complicated etching process. As the imaging performance of the mask can be varied with this SWA of the absorber stack, more complicated optical proximity correction is required to compensate for the variation of imaging performance. In this study, phase shift mask (PSM) is suggested to reduce the variation of imaging performance due to SWA change by modifying mask material and structure. Variations of imaging performance and lithography process margin depending on SWA were evaluated through aerial image and developed resist simulations to confirm the advantages of PSM over the binary intensity mask (BIM). The results show that the variations of normalized image log slope and critical dimension bias depending on SWA are reduced with PSM compared to BIM. Process margin for exposure dose and focus was also improved with PSM.

Far ultraviolet observations of diffuse, monoenergetic, and broadband auroras

  • Lee, Jun-Chan;Min, Kyoung-Wook;Lee, Chi-Na
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.134.2-134.2
    • /
    • 2012
  • Discrete auroras, with unique shapes embedded in diffuse auroras, are generally associated with precipitating electrons that originate from the plasma sheet and are accelerated on the way as they travel to polar regions along the field lines. Two acceleration mechanisms have been proposed: quasi-static electric fields and dispersive Alfven waves, which are believed to yield monoenergetic peaks and broadband features in the particle spectra, respectively. Hence, it should be interesting to see how the two different mechanisms, through their characteristic spectra of the accelerated electrons, produce distinct auroral images and spectra, especially in the far ultraviolet (FUV) wavelengths as the long and short Lyman-Birge-Hopfield (LBH) bands exist as well as the strong absorption band of molecular oxygen in the FUV band. In fact, we have previously shown, using the simultaneous observations of precipitating electrons and the corresponding FUV spectra, that the discrete auroras associated with inverted-V events have a stronger relative intensity of the long LBH to the short LBH compared to diffuse auroras, especially when the peak energy is above a few keV. In this paper, we would like to focus on the differences in the FUV images and spectra between the two discrete auroras of the monoenergetic and broadband cases, again based on the study using the dataset of simultaneous observations of particles and FUV spectral images.

  • PDF

Spectral-shape-controllable Chirped Fiber Bragg Grating with a Photomechanical Microactuator: Simulation and Experiment

  • Moon, Jong-Ju;Ko, Youngmin;Park, Su-Jeong;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.477-482
    • /
    • 2020
  • Recently, one of the authors has been reported an optically tunable fiber Bragg grating (FBG) with a photomechanical polymer. It was based on a typical FBG with a downsized diameter of 60 ㎛, coated with azobenzene-containing polymer material. Azobenzene is a well-known reversibly photomechanical stretchable material under ultraviolet (UV) light. The small part of the functional-coating region on the FBG absorbed UV light, which pulled the UV-exposed part of the grating. It was selectable as tunable FBG or tunable chirped FBG, by adjusting the position of UV exposure on the grating. As proof of concept for the tunable FBG device, the characteristics just including UV-induced center-wavelength shift and spectral-width changes of the device were reported. In this paper, we report for the first time that the microactuator makes it possible to control the spectral shape of the FBG reflection, according to the specifications (shape and intensity) of the UV beam that reaches the FBG coated with the azobenzene polymer. In addition, we provide the group-delay profiles for the chirped FBG, so that the sign of its dispersion (normal or anomalous) can be tailored by simply selecting the moving direction of the UV light's displacement in the experiment.