• Title/Summary/Keyword: Ultrasound-based elastography

Search Result 11, Processing Time 0.026 seconds

Stiffness Comparison of Tissue Phantoms using Optical Coherence Elastography without a Load Cell

  • Chae, Yu-Gyeong;Park, Eun-Kee;Jeon, Min Yong;Jeon, Byeong-Hwan;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2017
  • Mechanical property of tissue is closely related to diseases such as breast cancer, prostate cancer, cirrhosis of the liver, and atherosclerosis. Therefore measurement of tissue mechanical property is important for a better diagnosis. Ultrasound elastography has been developed as a diagnostic modality for a number of diseases that maps mechanical property of tissue. Optical coherence elastography (OCE) has a higher spatial resolution than ultrasound elastography. OCE, therefore, could be a great help for early diagnosis. In this study, we made tissue phantoms and measured their compressive moduli with a rheometer measuring the response to applied force. Uniaxial strain of the tissue phantom was also measured with OCE by using cross-correlation of speckles and compared with the results from the rheometer. In order to compare stiffness of tissue phantoms by OCE, the applied force should be measured in addition to the strain. We, however, did not use a load cell that directly measures the applied force for each sample. Instead, we utilized one silicone film (called as reference phantom) for all OCE measurements that indirectly indicated the amount of the applied force by deformation. Therefore, all measurements were based on displacement, which was natural and effective for image-based elastography such as OCE.

Conventional Ultrasonography and Real Time Ultrasound Elastography in the Differential Diagnosis of Degenerating Cystic Thyroid Nodules Mimicking Malignancy and Papillary Thyroid Carcinomas

  • Wu, Hong-Xun;Zhang, Bing-Jie;Wang, Jun;Zhu, Bei-Lin;Zang, Ya-Ping;Cao, Yue-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.935-940
    • /
    • 2013
  • Background: To evaluate the diagnostic utility of conventional ultrasonography and real time ultrasound elastography in differentiating degenerating cystic thyroid nodules mimicking malignancy from papillary thyroid carcinoma. Methods: We retrospectively analyzed conventional ultrasonographic and elastographic characteristics of 19 degenerating cystic thyroid nodules mimicking malignancy in 19 patients, with 30 surgically confirmed PTCs as controls. Based on size, the nodules had been grouped into less than 10mm (group A) and greater than 10 mm (group B). We evaluated conventional parameters and elasticity pattern. Color-scaled elastograms were graded as to stiffness of nodules using an elasticity pattern from I (soft) to IV (stiff). Results: Degenerating cystic thyroid nodules were similar to PTCs in conventional ultrasonographic findings, but the former frequently showed oval to round in shape (group A, 69.2% vs 18.8%, P=0.017; group B, 66.7% vs 7.14%, P=0.017) and punctuate hyperechoic foci (group A, 61.5% vs 0, P<0.001; group B, 50% vs 0, P<0.001). On real time ultrasound elastography, 7 of 13 degenerating cystic thyroid nodules in group A were pattern I, 5 were pattern II, 1 was pattern III. One degenerating cystic thyroid nodule in group B was pattern II, 5 were pattern III. The area under the curve for elastography was 0.98 in group A (sensitivity 92.3%, specificity 100%, P = 0.002), and 0.88 in group B (sensitivity 16.7%, specificity 100%, P = 0.014). Conclusions: As a dependable imaging technique, elastography helps increase the performance in differential diagnosis of degenerating cystic thyroid nodule and malignancy.

Usefulness of Color-overlay Pattern of Thyroid Elastic Ultrasonography (갑상선 탄성 초음파 검사 시 칼라 오버레이 패턴의 유용성)

  • Park, Ji-Yeon;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.341-346
    • /
    • 2022
  • The color overlay pattern of thyroid shear wave elastography applied in this study distinguishes benign and malignant nodules based on the optimal cut-off value of 74.2 kPa. From august 2021 to september 2021, thyroid ultrasound and elastography were performed on 57 patients with thyroid lesions using an ultrasound device RS85 prestige (Samsung Medison, Korea) and a 2-14 MHz linear transducer. In addition, the results of classification by K-TIRADS for each thyroid nodule and the results of classification by color overlay pattern according to the kPa value of acoustic ultrasound were compared and analyzed. In the color overlay pattern, the results classified as 40 people from dark blue to light blue and 17 people from green to red were similar to the K-TIRADS category results, which were classified as 42 benign and 15 malignant. Between blue and light blue, benign, and between green and red, malignant. If the shear wave elastography method is applied before the fine-needle aspiration cytology of the thyroid nodule is performed, the differential diagnosis of thyroid tissue from benign and malignant can be predicted in advance, and it will help to reduce unnecessary invasive tests.

Age-related change in shear elastic modulus of the thoracolumbar multifidus muscle in healthy Beagle dogs using ultrasound shear wave elastography

  • Tokunaga, Akari;Shimizu, Miki
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.13
    • /
    • 2021
  • Background: Multifidus muscle stiffness decreases in patients with lumbar intervertebral disk herniation; however, age-related changes in humans have not been reported. Objectives: The reliability of ultrasound shear wave elastography in dogs, and changes in the shear elastic modulus of the thoracolumbar multifidus muscle with aging in dogs, were investigated. Methods: Twelve beagle dogs were divided into 2 groups based on the age of onset of intervertebral disk herniation: young (aged not exceeding 2 years; 1.3 ± 0.6 years old, n = 5) and adult (4.9 ± 1.2 years old, n = 7). The shear elastic modulus of the multifidus muscle, from the thirteenth thoracic spine to the fourth lumbar spine, was measured using ultrasound shear wave elastography. The length, cross-sectional area and muscle to fat ratio of the multifidus muscle, and the grade of intervertebral disk degeneration, were assessed using radiographic and magnetic resonance imaging examinations. Results: The length and cross-sectional area of the multifidus muscle increased caudally. In the young group, the shear elastic modulus of the multifidus muscle of the thirteenth thoracic spine was less than that of the third lumbar spine. In the adult group, the shear elastic modulus of the multifidus muscle of first and third lumbar spine was lower than that of the same site in the young group. Conclusions: Ultrasound can be used to measure shear wave elastography of the thoracolumbar multifidus in dogs. If the multifidus muscle stiffness decreases, we should consider age-related change.

Ultrasonic Phantom Based on Plastic Material for Elastography (초음파 탄성 영상 평가를 위한 플라스틱 기반의 팬텀 개발)

  • Ahn, Dong-Ki;Joung, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.368-373
    • /
    • 2009
  • A human tissue mimicking phantom is constructed to assess the performance of a medical ultrasound elasticity imaging system. In a human body, the tumor or cancer is stiffer than its surrounding normal tissue. A technique fur imaging the elasticity of such a tissue is referred to as elastography. Homogeneous elasticity phantoms with differing Young's moduli are constructed using a plastic hardener and softener to simulate the mechanical characteristics of a diseased human tissue. The Young's modulus of the fabricated homogeneous phantom materials were measured from 11.1 to 79.6 kPa depending on the mixing ratio of the amount of the hardener to that of the softener. An ultrasound lesion mimicking phantom was made of these materials, and ultrasound elasticity imaging was performed on it. It is confirmed in this paper that the fabricated plastic-based elasticity phantom is useful in representing the elastic characteristics of a human tissue.

Defining the optimal technique for endoscopic ultrasound shear wave elastography: a combined benchtop and animal model study with comparison to transabdominal shear wave elastography

  • Thomas J. Wang;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.56 no.2
    • /
    • pp.229-238
    • /
    • 2023
  • Background/Aims: Shear wave elastography (SWE) is used for liver fibrosis staging based on stiffness measurements. It can be performed using endoscopic ultrasound (EUS) or a transabdominal approach. Transabdominal accuracy can be limited in patients with obesity because of the thick abdomen. Theoretically, EUS-SWE overcomes this limitation by internally assessing the liver. We aimed to define the optimal technique for EUS-SWE for future research and clinical use and compare its accuracy with that of transabdominal SWE. Methods: Benchtop study: A standardized phantom model was used. The compared variables included the region of interest (ROI) size, depth, and orientation and transducer pressure. Porcine study: Phantom models with varying stiffness values were surgically implanted between the hepatic lobes. Results: For EUS-SWE, a larger ROI size of 1.5 cm and a smaller ROI depth of 1 cm demonstrated a significantly higher accuracy. For transabdominal SWE, the ROI size was nonadjustable, and the optimal ROI depth ranged from 2 to 4 cm. The transducer pressure and ROI orientation did not significantly affect the accuracy. There were no significant differences in the accuracy between transabdominal SWE and EUS-SWE in the animal model. The variability among the operators was more pronounced for the higher stiffness values. Small lesion measurements were accurate only when the ROI was entirely situated within the lesion. Conclusions: We defined the optimal viewing windows for EUS-SWE and transabdominal SWE. The accuracy was comparable in the non-obese porcine model. EUS-SWE may have a higher utility for evaluating small lesions than transabdominal SWE.

Combination of Quantitative Parameters of Shear Wave Elastography and Superb Microvascular Imaging to Evaluate Breast Masses

  • Eun Ji Lee;Yun-Woo Chang
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1045-1054
    • /
    • 2020
  • Objective: This study aimed to evaluate the diagnostic value of combining the quantitative parameters of shear wave elastography (SWE) and superb microvascular imaging (SMI) to breast ultrasound (US) to differentiate between benign and malignant breast masses. Materials and Methods: A total of 200 pathologically confirmed breast lesions in 192 patients were retrospectively reviewed using breast US with B-mode imaging, SWE, and SMI. Breast masses were assessed based on the breast imaging reporting and data system (BI-RADS) and quantitative parameters using the maximum elasticity (Emax) and ratio (Eratio) in SWE and the vascular index in SMI (SMIVI). The area under the receiver operating characteristic curve (AUC) value, sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of B-mode alone versus the combination of B-mode US with SWE or SMI of both parameters in differentiating between benign and malignant breast masses was compared, respectively. Hypothetical performances of selective downgrading of BI-RADS category 4a (set 1) and both upgrading of category 3 and downgrading of category 4a (set 2) were calculated. Results: Emax with a cutoff value of 86.45 kPa had the highest AUC value compared to Eratio of 3.57 or SMIVI of 3.35%. In set 1, the combination of B-mode with Emax or SMIVI had a significantly higher AUC value (0.829 and 0.778, respectively) than B-mode alone (0.719) (p < 0.001 and p = 0.047, respectively). B-mode US with the addition of Emax, Eratio, and SMIVI had the best diagnostic performance of AUC value (0.849). The accuracy and specificity increased significantly from 68.0% to 84.0% (p < 0.001) and from 46.1% to 79.1% (p < 0.001), respectively, and the sensitivity decreased from 97.6% to 90.6% without statistical loss (p = 0.199). Conclusion: Combining all quantitative values of SWE and SMI with B-mode US improved the diagnostic performance in differentiating between benign and malignant breast lesions.

New Perspectives in Pediatric Nonalcoholic Fatty Liver Disease: Epidemiology, Genetics, Diagnosis, and Natural History

  • Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.6
    • /
    • pp.501-510
    • /
    • 2019
  • Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The global prevalence of pediatric NAFLD from general populations is 7.6%. In obese children, the prevalence is higher in Asia. NAFLD has a strong heritable component based on ethnic difference in the prevalence and clustering within families. Genetic polymorphisms of patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2, and glucokinase regulatory protein (GCKR) are associated with the risk of NAFLD in children. Variants of PNPLA3 and GCKR are more common in Asians. Alterations of the gut microbiome might contribute to the pathogenesis of NAFLD. High fructose intake increases the risk of NAFLD. Liver fibrosis is a poor prognostic factor for disease progression to cirrhosis. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction are more accurate for steatosis quantification than ultrasound. Noninvasive imaging methods to assess liver fibrosis, such as transient elastography, shear-wave elastography, and magnetic resonance elastography are useful in predicting advanced fibrosis, but they need further validation. Longitudinal follow-up studies into adulthood are needed to better understand the natural history of pediatric NAFLD.

Algorithms for Ultrasound Elasticity Imaging (초음파 탄성 영상 알고리듬)

  • Kwon, Sung-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.484-493
    • /
    • 2012
  • Since the 1980s, there have been many research activities devoted to quantitatively characterizing and imaging human tissues based on sound speed, attenuation coefficient, density, nonlinear B/A parameter, etc., but those efforts have not yet reached the stage of commercialization. However, a new imaging technology termed elastography, which was proposed in the early 1980s, has recently been implemented in commercial clinical ultrasound scanners, and is now being used to diagnose prostates, breasts, thyroids, livers, blood vessels, etc., more quantitatively as a complementary adjunct modality to the conventional B-mode imaging. The purpose of this article is to introduce and review various elastographic algorithms for use in quasistatic or static compression type elasticity imaging modes. Most of the algorithms are based on the crosscorrelation or autocorrelation function methods, and the fundamental difference is that the time shift is estimated by changing the lag variable in the former, while it is directly obtained from the phase shift at a fixed lag in the latter.

Reproducibility Evaluation of Shear Wave Elastography According to the Depth of the Simulated Lesion in Breast Ultrasonography (유방초음파 검사에서 모조 병소의 깊이에 따른 전단파 탄성초음파의 재현성 평가)

  • Jin-Hee Kim;In-Soo Kim;Cheol-Min Jeon;Jae-Bok Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.919-927
    • /
    • 2023
  • Elastography utilizes the fact that the tissue of a malignant tumor is harder than that of a benign tumor and increases the specificity of diagnosis according to the elastic modulus of the tumor, helping to reduce unnecessary biopsies. However, the reliability of elastography can be influenced by the equipment used and the examiner's skills. In this study, the researchers analyzed the reproducibility of elastography by evaluating phantom images when measuring the elasticity values repeatedly. Phantoms were created using silicone and gelatin with different levels of stiffness, and they were inserted at varying depths from the surface. The elasticity values were measured using shear wave elastography. The study aimed to determine whether the reproducibility of elasticity values remains consistent depending on the stiffness and depth of the lesions. The experimental results showed that there was no statistically significant correlation between the elasticity values obtained through shear wave elastography and the depth or stiffness of the lesions. However, in the lesions with the lowest stiffness, the elasticity values were statistically significant (p<0.001) and showed a high correlation with the depth of the lesions. Although there were variations in the measured elasticity values based on the differences in lesion stiffness and depth, these differences did not significantly impact the diagnosis. Therefore, shear wave elastography remains a reliable diagnostic method, and it is suggested that it can be helpful in the diagnosis of breast lesions.