• Title/Summary/Keyword: Ultrasound transducer

Search Result 197, Processing Time 0.025 seconds

Phantom Evaluation and Development of Photoacoustic Tomography Imaging System using Unfocused Ultrasound Transducer and Back-Projection Algorithm (역투사 알고리듬과 비촛점 트랜스듀서를 적용한 광음향 단층영상 장치개발과 팬텀실험)

  • Ryu, Sang-Hun;Kim, Do-Hyun;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2349-2351
    • /
    • 2010
  • Photo Acoustic Tomography (PAT) is a hybrid imaging modality which combines high contrast of optical imaging and spatial resolution of ultrasound imaging, thus it is suitable to image biological tissue noninvasively. Laser-induced photoacoustic signals were measured from a sample by means of an unfocused ultrasound transducer, then PAT image was reconstructed based on a universal back-projection algorithm. To evaluate the feasibility of our system, phantom test was performed, consequently, the PAT images obtained using our system showed highly analogous shape and volume with those of the phantom. This result demonstrated that our system can provide a powerful tool for imaging the substructure of biological tissue in non-invasive manner.

Forward-Looking Ultrasound Imaging Transducer : II. Fabrication and Experimental Results

  • Lee, Chankil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.76-84
    • /
    • 1996
  • The experimental testing results of the large-scale version of a forward-looking ultrasound imaging catheter(FLUIC) are presented, along with the fabrication techniques used, experimental methods, and comparisons of the measured and simulated results. The transducer model is verified by measuring the electrical impedance of the transducer. The pulse width, beamwidth, and the dynamic range for both transmit and pulse-echo response of the fabricated FLUIC are also analyzed. The experimental results conformed its forward-looking imaging capability and the sources of discrepancies between the simulated and experimental beam profiles are addressed.

  • PDF

Intracavitary Ultrasound Hyperthermia Applicators for Gynecological Cancer

  • Lee, Rena J. .;Suh, Hyun-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.53-53
    • /
    • 2003
  • For evaluating the feasibility of treating recurrent lesions in the vaginal cuff and cervix by hyperthermia, ultrasound applicators were designed, constructed, and characterized. For the treatment A half-cylindrical transducer Cd=1cm, length=lcm) and cylindrical transducer (d=2.5cm, length= 1.5cm) were used to construct ovoid type and cylindrical applicators. For the ovoid type applicator, each element was operated at 1.5MHz and characterized by measuring transducer efficiency and acoustic power distribution. Thermocouple probes were used to measure the temperature rise in phantom. The element sizes used in this study were selected to be comparable for high dose rate brachytherapy colpostat applicator. Each element was powered separately to achieve a desired temperature pattern in a target. The acoustic output power as a function of applied electric power of the element 1 and 2 was linear over this 1 to 40 W range and efficiencies were 32.2${\pm}$3.4% and 46.2${\pm}$0.8%, respectively. The temperature measurements in phantom showed that 6$^{\circ}C$ temperature rise was achieved at 2 cm from the applicator surface. As a conclusion, the ability of the ultrasound colpostat applicator to be used for hyperthermia was demonstrated by measuring acoustic output power, ultrasound field distribution, and temperature rise in phantom. Based on the characteristics of this applicator, it has the potential to be useful for inducing hyperthermnia to the vaginal cuff in clinic.

  • PDF

Estimation of Equivalent Circuit Parameters for Dual Resonance Electroacoustic Transducer Using Iterative Levy Method (두 개의 공진점을 갖는 광대역 초음파 전기음향 변환기의 등가회로변수 추정)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.18-23
    • /
    • 2012
  • A method to determine the equivalent circuits of broadband ultrasound transducers is necessary for designing filters that match the impedances of the transducer and the analysis of the transducer. A method is proposed to determine the equivalent circuits of broadband transducers with 2 resonances in the frequency band of interest. The circuit parameters are estimated by iterative Levy method with the measured electrical conductance data. The method is illustrated by computing the conductance and susceptance of the equivalent circuits of 3 types of broadband transducers. The equivalent circuit of a transducer.

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

High Frequency Ultrasound and Its Applications to Animal and Human Imaging Focusing on Vessel and Blood (고주파 초음파의 그 응용: 혈관과 혈액을 중심으로한 동물과 인체 영상)

  • Bok, Tae-Hoon;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.73-85
    • /
    • 2010
  • In the diagnostic ultrasound (US) transducer technology, the high frequency US(HFUS) transducer over 20 MHz is one of the current issues to be pursued for better resolution with the expense of penetration. HFUS single element transducers and the mechanical scanning systems for imaging are reviewed, and HFUS array transducers are also briefly summarized. HFUS applications such as the human applications in ophthalmology and dermatology and small animal applications for research purposes are reviewed with vascular and blood imaging in this paper.

Development of a Ultrasound Probe for 3-D Ultrasonic Imaging (3차원 의료기기용 초음파진단기 프로브 개발)

  • Park, Jong-Soo;Kim, Seong-Rae;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.87-93
    • /
    • 2005
  • Three-dimensional ultrasonic probes being applied to the medical imaging can be grouped into three depending on the scanning methods, which are a mechanical type system, a free-hand system, and 2D phased arrays system. A mechanical type scanner uses a mechanically driven transducer to acquire series of 2D plane images. By integrating these images, a 3-D medical image can be constructed. A motor driving mechanism is a conventional choice for mechanically driving a transducer assembly which picks the raw ultrasonic images up. In this paper we attempt to design a 3D ultrasonic probe which has a operating mechanism of s tilting 3-D scanning. The motion of a transducer assembly of the ultrasonic probe is analytically modelled. We propose a selection procedure for the diameter of a wire rope driving the transducer assembly and the size of torsional spring which gives an initial tension to wire ropes.

  • PDF

High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends (HIFU: 현황 및 기술적 동향)

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.