• 제목/요약/키워드: Ultrasound Wave

검색결과 230건 처리시간 0.024초

Quantitative Evaluation of Gastrocnemius Medialis Stiffness During Passive Stretching Using Shear Wave Elastography in Patients with Parkinson's Disease: A Prospective Preliminary Study

  • Lu Yin;Lijuan Du;Yuanzi Li;Yang Xiao;Shiquan Zhang;Huizi Ma;Wen He
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1841-1849
    • /
    • 2021
  • Objective: To prospectively investigate the feasibility of shear wave elastography (SWE) as a new quantitative and objective method for evaluating the stiffness of the gastrocnemius medialis (GM) muscle during passive stretching in patients with Parkinson's disease (PD). Materials and Methods: SWE of the GM muscle was performed in 28 patients with PD [13 female and 15 male; mean age ± standard deviation (SD): 63.0 ± 8.5 years] and 12 healthy controls (5 female and 7 male; mean age ± SD: 59.3 ± 6.4 years) during passive ankle rotation. A Young's modulus-ankle angle curve was constructed. The GM slack angle and baseline Young's modulus (E0) were compared between the markedly symptomatic and mildly symptomatic sides of patients with PD, and healthy controls. Additionally, the correlation between the GM slack angle and the severity of rigidity, and the observer reproducibility of SWE in determining the GM slack angle were evaluated. Results: The GM slack angle was smaller on both the markedly and mildly symptomatic sides in patients with PD than in healthy controls (mean ± SD of -29.13° ± 3.79° and -25.65° ± 3.39°, respectively, vs. -21.22° ± 3.52°; p < 0.001 and p = 0.006, respectively). Additionally, in patients with PD, the GM slack angle on the markedly symptomatic side was smaller than that on the mildly symptomatic side (p = 0.003). The E0 value was lower on both the markedly and mildly symptomatic sides in patients with PD than in healthy controls (mean ± SD of 10.11 ± 2.85 kPa and 10.08 ± 1.88 kPa, respectively, vs. 12.23 ± 1.02 kPa; p = 0.012 and p < 0.001, respectively). However, no significant difference was found between the markedly and mildly symptomatic sides in patients with PD (p = 0.634). A negative linear relationship was observed between the GM slack angle and lower limb rigidity score on the markedly symptomatic side in patients with PD (r = -0.719; p < 0.001). The intraclass correlation coefficients for observer reproducibility of SWE ranged from 0.880 to 0.951. Conclusion: The slack angle determined by SWE may be a useful quantitative and reproducible method for evaluating muscle stiffness in patients with PD.

400 kHz 중주파 초음파에 의한 수용액의 산화특성 및 피톤치드 오일 분해특성에 대한 연구 (A Study on Oxidation Characteristics and Phytoncide Oil Decomposition Characteristics of Aqueous Solution by 400 kHz Medium Frequency Ultrasound)

  • 황보선애;김부안;문창권
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, the effect of the irradiation of the median-frequency of ultrasonic wave on the aqueous solution have been investigated. In addition, the decomposition ability of radical species was observed using phytoncide oil of 0.1 wt %. By observing the degree of decomposition while maintaining magnetic stirring, the unirradiated aqueous solution maintained turbid condition and the particle size of the oil was the same as the initial size. On the other hand, the irradiated aqueous solution presented that the transparency degree became good after 3 days and became to the same as the original purified water after one week. The particle size of the after 3 days was about 0.1 to $0.5{\mu}m$. From these results it could be demonstrated that when a medium frequency (about 400 kHz) is applied to the aqueous solution, decomposition ability of radical species are formed and the medium frequency irradiation system can be possible to purify the turbid aqueous solution.

테라헤르츠파를 이용한 FRP 복합재료의 비파괴결함평가 (Nondestructive Evaluation in the Defects of FRP Composites By Using Terahertz Waves)

  • 임광희;김지훈
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.252-258
    • /
    • 2012
  • A study of terahertz waves was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The terahertz systems were consisted of time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both non-conducting polymeric composites and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. The CFRP (Carbon fiber reinforced plastics) laminates were utilized for confirming the experimentation in the terahertz NDE. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field direction of the terahertz waves and the intervening fiber directions. A refractive index (n) was defined as one of mechanical properties; so a method was obtained in order solve the "n" in the material with non-conductivity. The usefulness and limitations of terahertz radiation are investigated for the NDE of FRP composites.

고강도 초음파에 의한 PEO의 분해특성에 관한 연구 (Effect of High Intensity Ultrasonic Wave on the Degradation Characteristics of PEO)

  • 김형수;김미화
    • 폴리머
    • /
    • 제26권3호
    • /
    • pp.353-359
    • /
    • 2002
  • 본 연구에서는 고강도 초음파를 이용하여 분자량이 다른 poly(ethylene oxide) (PEO)를 증류수에 분산시켜 초음파 가진(加振) 시간이 PEO의 성질에 미치는 영향을 조사하였다. 고강도 초음파는 PEO 수용액 상에서 동공 형성 및 파괴를 일으켜서 PEO 거대 라디칼을 형성하였으며 이로인하여 PEO 자체의 유변학적 성질, 화학 구조 그리고 용융 거동이 현저하게 변화되었다. 초음파 가진에 의하여 PEO의 용융 점도는 감소되었고, 물과 PEO 사슬에서 비롯된 여러 종류의 라디칼들의 상호 작용으로 말미암아 새로운 말단기들이 생성되었다. 아울러 분자량에 따라 상이한 용융 거동을 나타내었는데, 상대적으로 분자량이 큰 경우에는 가진되지 않은 PEO에 비하여 결정화 속도가 느려지고 용융 피크의 강도가 감소되는 특성을 나타내었다.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

초음파 측정법에 의한 아스팔트 세멘트의 점탄성 특성 평가 (Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement)

  • 이재학
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.402-411
    • /
    • 2000
  • 이 연구에서는 점탄성 재료중의 하나인 아스팔트 세멘트의 점탄성 특성을 초음파를 이용하여 측정하는 방법에 대하여 고찰하였다. 2.25MHz의 주파수에서 $-20^{\circ}C$부터 $60^{\circ}C$까지의 온도변화에 따른 파속도와 감쇠를 측정한 후, 선형 점탄성 이론에 근거하여 저장 및 손실 종탄성율, 손실 탄젠트, 저장 및 손실 종컴플라이언스와 같은 물성변화를 구하였다. Maxwell과 Voigt-Kelvin 점탄성 모델을 이용하여 응력완화 및 크리프 거동과 점도의 변화도 예측하였다. 또한 중첩원리와 이동인자의 타당성을 문헌에 보고된 결과와 비교함으로써 입증할 수 있었다.

  • PDF

T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가 (Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray)

  • 임광희;정종안;;이길성
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).

만성 발바닥 근막염 환자에 대한 물리치료적 접근법: 특이적 뻗침운동과 고부하 강화 운동의 효과 비교 (Physiotherapy Approach to Patients with Chronic Plantar Fasciitis : Comparison of the Effects of Specific Stretching Exercise and High-Load Strengthening Exercise)

  • 추연기;배원식
    • 대한통합의학회지
    • /
    • 제9권1호
    • /
    • pp.151-161
    • /
    • 2021
  • Purpose : This study was to investigate the effectiveness of ESWT and plantar fascia-specific stretching exercise vs ESWT and high-load strengthening exercise in patients with chronic plantar fasciitis. Methods : The subjects were randomized to extracorporeal shock wave therapy ( ESWT, for 3 weeks) and daily plantar-specific stretching (Group I: Stretch group) or ESWT and high-load progressive strength (Group II: Strength group) performed every second day. The main outcome measures were ultrasound, visual analogue scale (VAS), and Korean Foot Function Index (KFFI). The ultrasound (plantar fascia thickness), pain intensity I, II (the most painful of the day?, the pain when you first step in the morning?) and KFFI (functional performance) were compared between the groups. Results : No significant difference was observed between the groups in the plantar fascia thickness but pain intensity I, II was significantly lower in Group 2 than in Group 1 at only 12weeks and functional performance was also significantly increased in Group 2 compared to Group 1 at only 12 weeks. Conclusion : The high-load strengthening exercise consisting of the progressive exercise protocol, resulted in superior after 12 weeks compared with plantar-specific stretching. High-load strength exercise may aid in a quicker reduction in pain and improvements in functional performance.

초음파 영상 시스템에서 합성 집속을 위한 새로운 구면파 발생 방법 (New Circular Wave Generation Method for Synthetic Focusing in Ultrasonic Imaging Systems)

  • 안영복
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.798-802
    • /
    • 2007
  • The synthetic focusing in the ultrasonic imaging systems has been formed in the way that one element transmits a circular wave and receives an echo signal. The amplitude of the signal transmitted from one element is too small to propagate a long distance so that the SNR(Signal to Noise Ratio) is very low in an image obtained by the synthetic focusing. To solve this problem, a defocusing method which uses several elements has been proposed. In this method, the SNR is improved due to using several elements to transmit the circular wave. But if the number of transmitting elements increases, the phase distortion is severe in the defocusing method. In this paper, we propose a new method that can generate a circular wave using a lot of elements without phase distortion. At first, we generate limited plane waves with different propagation angles and then superpose them to make a circular wave. We show that the circular wave can be used to improve SNR in the real-time 3D ultrasonic imaging as well as the synthetic focusing through computer simulation and experiments.

초음파 의료 영상에서 비집속 송신을 이용한 고속 음향 복사력 임펄스 영상법 (Fast Acoustic Radiation Force Impulse Imaging Using Non-focused Transmission in Medical Ultrasound Imaging)

  • 최승민;박정만;권성재;정목근
    • 한국음향학회지
    • /
    • 제31권3호
    • /
    • pp.151-160
    • /
    • 2012
  • 초음파 의료 영상에서 탄성영상은 암과 같은 종양의 진단에 도움을 준다. 본 논문은 초음파 음향 복사력을 이용하여 관찰하고자 하는 연조직에 힘을 인가하여 탄성 영상을 구현하였다. 데이터 획득 시간을 줄이기 위하여 송신 집속을 하지 않고 버스트 (burst) 형태의 평면파를 송신하여 모든 영상 영역에 동시에 음향 복사력이 인가되도록 하였다. 균일 탄성팬텀을 이용한 실험에서 송신 집속을 하지 않고도, 송신 시간을 길게 함으로써 탄성 영상을 얻기에 충분한 음향 복사력을 얻을 수 있음을 확인하였다. 그러나 기존의 집속형 음향 복사력을 이용한 영상과는 다른 시간 대 변위 특성이 관찰되었다. 제안한 탄성 영상 기법으로 초음파 병변 탄성 팬텀과 소의 간 실험에서 병변을 구별할 수 있음을 확인하였다.