• 제목/요약/키워드: Ultrasound Wave

검색결과 228건 처리시간 0.022초

Two-Dimensional Shear Wave Elastography Predicts Liver Fibrosis in Jaundiced Infants with Suspected Biliary Atresia: A Prospective Study

  • Huadong Chen;Luyao Zhou;Bing Liao;Qinghua Cao;Hong Jiang;Wenying Zhou;Guotao Wang;Xiaoyan Xie
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.959-969
    • /
    • 2021
  • Objective: This study aimed to evaluate the role of preoperative two-dimensional (2D) shear wave elastography (SWE) in assessing the stages of liver fibrosis in patients with suspected biliary atresia (BA) and compared its diagnostic performance with those of serum fibrosis biomarkers. Materials and Methods: This study was approved by the ethical committee, and written informed parental consent was obtained. Two hundred and sixteen patients were prospectively enrolled between January 2012 and October 2018. The 2D SWE measurements of 69 patients have been previously reported. 2D SWE measurements, serum fibrosis biomarkers, including fibrotic markers and biochemical test results, and liver histology parameters were obtained. 2D SWE values, serum biomarkers including, aspartate aminotransferase to platelet ratio index (APRi), and other serum fibrotic markers were correlated with the stages of liver fibrosis by METAVIR. Receiver operating characteristic (ROC) curves and area under the ROC (AUROC) curve analyses were used. Results: The correlation coefficient of 2D SWE value in correlation with the stages of liver fibrosis was 0.789 (p < 0.001). The cut-off values of 2D SWE were calculated as 9.1 kPa for F1, 11.6 kPa for F2, 13.0 kPa for F3, and 15.7 kPa for F4. The AUROCs of 2D SWE in the determination of the stages of liver fibrosis ranged from 0.869 to 0.941. The sensitivity and negative predictive value of 2D SWE in the diagnosis of ≥ F3 was 93.4% and 96.0%, respectively. The diagnostic performance of 2D SWE was superior to that of APRi and other serum fibrotic markers in predicting severe fibrosis and cirrhosis (all p < 0.005) and other serum biomarkers. Multivariate analysis showed that the 2D SWE value was the only statistically significant parameter for predicting liver fibrosis. Conclusion: 2D SWE is a more effective non-invasive tool for predicting the stage of liver fibrosis in patients with suspected BA, compared with serum fibrosis biomarkers.

효율적인 혈류 속도 측정을 위한 연속 초음파 도플러 장치의 구현 (An implementation of the continuous wave doppler system for blood flow measurement using the ultrasound)

  • 박형재;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.516-519
    • /
    • 2001
  • 환자를 진단하는데 있어 중풍, 고혈압, 동맥경화, 고지혈증 등 혈관 질환에 대해서 혈류에 관한 정보는 매우 중요하다. 초음파를 이용하여 혈류 속도를 측정하는 방법에는 연속 도플러 시스템과 펄스 도플러 시스템으로 나뉘어진다. 펄스 도플러 시스템은 혈류의 위치정보를 얻을 수 있지만, 연속 도플러 시스템에 비해 하드웨어적으로 복잡하고 신호대 잡음비가 낮으므로 본 연구에서는 신뢰적인 정보를 얻을 수 있는 연속 도플러 시스템을 이용하였다. 본 시스템은 크게 아날로그 부와 디지털 부로 나뉘어진다. 아날로그 부는 초음파 신호의 발생부, 초음파 센서로 수신된 신호를 증폭하는 증폭부와 혈류의 도플러 신호를 검출하는 복조부, 잡음 제거를 위한 필터부분으로 구성되어 있다. 디지털 부는 검출된 아날로그 신호를 디지털 신호로 변환하는 부분, 디지털 신호처리 부분 그리고 개인용 컴퓨터(Personal Computer)와 통신하는 부분으로 구성된다. 본 연구에서는 효율적인 초음파 혈류 속도 측정 시스템을 구현함으로써 환자의 혈류 정보를 실시간으로 인을 수 있으므로 뇌혈류 측정 등에 사용되는 전산화 단층 환영장치(Computered Tomography), 자기 공명 영상 촬영장치(Magnetic Resonance Imaging)와 같은 장비와 더불어 보다 정확한 진단을 하는데 유용하다.

  • PDF

초고속 초음파 영상의 효과적인 데이터율 저감을 위한 적응 양자화 (Adaptive quantization for effective data-rate reduction in ultrafast ultrasound imaging)

  • 장도영;윤희철
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.422-428
    • /
    • 2023
  • 초고속 초음파 영상은 탄성 영상, 초고속 도플러, 초해상도 영상과 같은 다양한 초음파 기반의 기능성 영상기술에 폭넓게 적용되고 있다. 하지만, 획득하는 데이터의 양이 많아 실시간 영상 재구성이나 3차원 또는 모바일 초음파 영상 응용으로의 확장이 제한된다. 본 논문은 적응 양자화 기법을 통해 초고속 초음파 영상으로 획득되는 대용량 Radio frequency(RF) 데이터의 전송 효율을 높이는 방법을 제안한다. 인체에서 반사된 초음파 신호는 높은 동적 범위를 가져 대부분의 현재 시스템에서 사용되는 고정 양자화 기법은 10 bits ~ 14 bits 이상의 높은 양자화 단계를 가진다. 양자화 단계 저감에 대한 화질 저하의 한계를 극복하기 위해, 본 연구는 영상 깊이에 따라 구간을 설정하고, 각 영역별 RF 데이터를 정규화하고 양자화하는 방안을 제안한다. 정량적인 검증을 위해, Field II 컴퓨터 모사 실험을 활용하여, 고정 양자화 방법과 제안하는 방법의 대조도 대 잡음 비, 공간 해상도 및 원본 대비 유사도를 비교하였다. 또한, 연구용 초음파 장비를 활용한 인체 모사 실험 및 인체 실험을 통해 최종 3-bit로 재구성한 영상에서도 제안하는 방법이 효과적으로 적용되는 것을 입증하였다.

거리 기반 유사도 측정을 통한 유방 초음파 영상의 내용 기반 검색 컴퓨터 보조 진단 시스템에 관한 연구 (A Study of CBIR(Content-based Image Retrieval) Computer-aided Diagnosis System of Breast Ultrasound Images using Similarity Measures of Distance)

  • 김민정;조현종
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1272-1277
    • /
    • 2017
  • To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권3호
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

CT Image Reconstruction of Wood Using Ultrasound Velocities I - Effects of Reconstruction Algorithms and Wood Characteristics -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권5호통권133호
    • /
    • pp.21-28
    • /
    • 2005
  • For the proper conservation of wooden cultural properties, non-destructive evaluation (NDE) method, which can be used to quantitatively evaluate the internal state of wood members, are needed. In this study, an ultrasonic CT system composed of portable devices was attempted, and the capacity of this system was verified by reconstructing the CT images for two phantoms and two artificially defected specimens. Results from this study showed that the sizes of detected defects were enlarged and the shapes were distorted on the CT images. Also, the positions were shifted somewhat toward the surface of specimen, which is regarded due to the anisotropic property of wood. Compared to the filtered back-projection method, SIRT (simultaneous iterative reconstruction technique) method was determined to be more efficient as the algorithm of image reconstruction for wood. A new ultrasonic CT system is thought to be used as a NDE method for wood. However wood characteristics and wave diffraction within wood made it difficult to accurately evaluate the size, shape and position of defects. To improve the quality of CT image of wood, more research including the relationship between wood and ultrasound is needed, and wood properties should be taken into consideration on the image reconstruction algorithm.

초음파 트랜스듀셔 투과법을 이용한 CFRP 복합적층판의 특성평가 (Characteristics Evaluation of CFRP Composite Laminates Using a Through-Transmission Method of Ultrasonic Transducers)

  • 임광희;나승우;강태식;김선규;김지훈;이현;박제웅;심재기;양인영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.401-406
    • /
    • 2001
  • When propagating the thickness direction of composite laminates ultrasound waves interacts strongly with the orientation and sequence of the plies in a layup. Also the layup orientation greatly influences its properties in a composite laminate. If one ply of the layup orientation is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. Those may add a substantial cost to the product since the test is both labor hard and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and require less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite lam mates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. It is found that a high probability shows between the model and tests developed in characterizing cured layups of the laminates.

  • PDF

연속저주파를 이용한 미세조류 파쇄 (Analysis of Cell Disruption in Microalgae Using Continuous Low Frequency Non-Focused Ultrasound)

  • 최준혁;김광호;박종락;정상화
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.33-41
    • /
    • 2021
  • Recently, many studies have been conducted on substituting fossil fuels with bio-refineries in existing industrial systems using biomass. Among the various bio-refineries, microalgae have received wide attention because it uses inorganic compounds to produce useful substances, which are extracted by a cell disruption process. Although numerous cell disruption methods exist, cell disruption efficiency has been studied by ultrasonic treatment. Ultrasound is a high-frequency (20 kHz or higher) sound wave and causes cell disruption by cavitation when passing through a solvent. In this study, we used the microalgal species Chlorella sp., which was cultured in a plate-type photobioreactor. The experiment was conducted using a continuous low-frequency processing device. The reduction of cells with time due to cell disruption was fitted using a logistic model, and optimum conditions for highly efficient cell disruption were determined by conducting experiments under multiple conditions.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • 비파괴검사학회지
    • /
    • 제29권4호
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

Generation of Thermoelastic Waves by Irradiating a Metal Slab with a Line-Focused Laser Pulse

  • Yoo, Jae-Gwon;Baik, S.H.
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.181-189
    • /
    • 2006
  • A 2D finite-element numerical simulation has been developed to investigate the generation of ultrasonic waves in a homogeneous isotropic elastic slab under a line-focused laser irradiation. Discussing the physical processes involved in the thermoelastic phenomena, we describe a model for the pulsed laser generation of ultrasound in a metal slab. Addressing an analytic method, on the basis of an integral transform technique, for obtaining the solutions of the elastodynamic equation, we outline a finite element method for a numerical simulation of an ultrasonic wave propagation. We present the numerical results for the displacements and the stresses generated by a line-focused laser pulse on the surface of a stainless steel slab.