• Title/Summary/Keyword: Ultrasound Energy

Search Result 189, Processing Time 0.028 seconds

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.

A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection (초음파 열 영상 검사를 이용한 브레이징 접합 결함 검출)

  • Cho, Jai-Wan;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.426-431
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly.

CHEST WALL THICKNESS MEASUREMENTS AND THE DOSIMETRIC IMPLICATIONS FOR MALE RADIATION WORKERS AT THE KAERI

  • Lee, Tae-Young;Lee, Jong-Il;Chang, Si-Young;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.299-303
    • /
    • 2001
  • Using ultrasound techniques, the Korea Atomic Energy Research Institute has measured chest wall thicknesses of a group of male workers at the Korea Atomic Energy Research Institute. A site-specific biometric equation has been developed for these workers. Chest wall thickness is an important modifier on lung counting efficiency. These data have been put into the perspective of the ICRP recommended dose limits for occupationally exposed workers: 100 mSv in a 5-year period with a maximum of 50 mSv in anyone year. For measured chest wall thicknesses of 1.9 cm to 4.1 cm and a 30 min counting time, the achievable MDAs for natural uranium in the KAERI lung counter vary from 5.75 mg to 11.28 mg. These values are close to, or even exceed, the predicted amounts of natural uranium that will remain in the lung (absorption type M and S) after an intake equal to the Annual Limit on Intake corresponding to a committed dose of 20 mSv. This paper shows that the KAERI lung counter probably cannot detect an intake of Type S natural uranium in a worker with a chest wall thickness equal to the average value (2.7 cm) under routine counting conditions.

  • PDF

Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Seo, Ho-Geon;Kim, Myung-Hwan;Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

The Study of DEP Degradation Properties by Combination US and UV Lamp of Different Wavelength (초음파 (US)와 다양한 파장범위의 자외선 (UV) 조사에 따른 DEP 분해특성에 관한 연구)

  • Na, Seung-Min;Cai, Jinhua;Shin, Dong-Hoon;Cui, Mingcan;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.845-853
    • /
    • 2012
  • Diethyl phthalate (DEP) is widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including various applied power density (10-40 W/L), UV wavelengths (365 nm, 254 nm and 185 nm) and frequencies (283 kHz, 935 kHz) were applied to a DEP contaminated solution. The pseudo-first order degradation rate constants were in the order of $10^{-1}$ to $10^{-4}\;min^{-1}$ depending on the processes. Photolytic and sonophotolytic DEP degradation rate also were high at shortest UV wavelength (VUV) due to the higher energy of photons, higher molar absorption coefficient of DEP and increased hydroxyl radical generation from homolysis of water. Sonolytic DEP degradation rate increased with increase of applied input power and the dominant reaction mechanism of DEP in sonolysis was estimated as hydroxyl radical reaction by the addition of t-BuOH, which is a common hydroxyl radical scavenger. Moreover, synergistic effect of were also observed for sonophotolytic degradation with various UV irradiation.

Disinfection of Water by Ultrasonic Irradiation (초음파 검사에 의한 수중의 살균처리)

  • 손종렬;유병성
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The industrial techniques of ultrasound have been used in the various fields, such as cleaning, medical surgery, emulsification, cell disruption etc. Especially the application of cell disruption was interested in the field of disinfection process in water by ultrasonic irradiation. It has been recognized that the ultrasounds are irradiated in aqueous solution, cavitation bubbles are generated and shock waves of high temperature and pressure are emitted as the bubbles are developed and finally broken, which function as a energy source to promote reaction efficiencies of various kinds of chemical reactions such as disinfection reaction in water. Therefore, this study was performed to apply the ultrasound for the disinfection method of infected drinking raw water and to discuss the limiting factors such as pH, sample volume and reaction temperature influenced on the removal efficiency of E. coli from experimental analysis of the results obtained in bench-scale plant. For the experiments to measure the influence of reaction parameters in the ultrasonic disinfection process, escalated reactivity of aqueous solutions was excellent when pH in aqueous solution was low, and sample volume was small. On the contrary, the reactivity of disinfection became elevated when reaction temperature was high. It was found that the rate constant of disinfection reaction was applied by Chick's law, reaction kinetics of Chick's law was irreversible and pseudo-first order at all the tested conditions.As a conclusion it appeared that the technology using ultrasonic irradiation can be applied to the treatment of disinfection in infected water which are difficult to be treated by conventional methods.

  • PDF

Numerical Model for SBR Aerobic Digestion Combined with Ultrasonication and Parameter Calibration (초음파 결합형 SBR 호기성 소화의 모델과 매개변수의 보정)

  • Kim, Sunghong;Lee, Inho;Yun, Jeongwon;Lee, Dongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.457-468
    • /
    • 2013
  • Based on the activated sludge model(ASM), a mathematical model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) combined with ultrasonic treatment was composed and performed in this study. Aerobic digestion using sequencing batch reactor(SBR) equipped with ultrasound treatment was also experimented for the purpose of parameter calibration. Most of the presented kinetic parameters in ASM or ASM2 could be used for the aerobic digestion of sludge but the parameters related in hydrolysis and decay rate needed modification. Hydrolysis rate constant of organic matter in aerobic condition was estimated at $0.3day^{-1}$ and the maximum growth rate for autotrophs in aerobic condition was $0.618day^{-1}$. Solubilization reactions of particulate organics and nitrogen by ultrasonication was added in this kinetic model. The solubilization rate is considered to be proportional to the specific energy which is defined by specific ultrasound power and sonication time. The solubilization rate constant by ultrasonication was estimated at $0.202(W/L)^{-1}day^{-1}$ in this study. Autotrophs as well as heterotrophs also decomposed by ultrasonic treatment and the nitrification reaction was limited by the lack of autotrophs accumulation in the digester.

Effect of Power Intensity on the Phenol and Chlorinated Compounds Mixture Solutions by Ultrasound (초음파로 페놀 분해 시 염소계화합물의 첨가와 음향 강도의 영향)

  • Lim, Myunghee;Son, Younggyu;Yang, Jaekeun;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.118-122
    • /
    • 2008
  • Degradations of phenol and chlorinated compounds mixtures were studied with ultrasound of 20 kHz and 0.57, 1.14 W/mL. In presence of carbon tetrachloride (CT), degradation rate of phenol is faster than chloroform (CF), dichloromethane (DCM) and phenol solution. It is due to that CT generates of free chlorine (HOCl and $OCl^-$) from the sonochemical degradation and plays a role of hydrogen atom scavenger. CF and DCM are react with free chlorine, so amount of free chlorine is smaller than CT solution. The degradation rates of chlorinated compounds decreased with co-presence of phenol in the solution due to the distribution ultrasonic energy to both compounds. The measured chloride ion was lower than the theoretical concentration assuming complete degradation. This means not all the contaminants destructed went through complete degradation.

NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves (테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법)

  • Im, Kwang-Hee;Kim, Sun-Kyu;Jung, Jong-An;Cho, Young-Tae;Woo, Yong-Deuck
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.