• Title/Summary/Keyword: Ultrasonic water treatment system

Search Result 20, Processing Time 0.03 seconds

Development of experimental water level measuring device using an Arduino and an ultrasonic sensor (아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • Water levels are measured in various fields such as sewage treatment plants, water treatment plants, rivers, dams, factory storages' tanks. Ultrasonic instruments for water level measurement are expensive and are used for industrial field. Rapid advances in electronics have made it possible to build a wide variety of measurement, monitoring and control functions at low cost. This study was started to make ultrasonic level measurement system at low price. The system was constructed with an Arduino, an ultrasonic sensor and a temperature sensor for use in the experiment. The ultrasonic sensor measures the time from the sensor to the liquid surface. The temperature sensor measures the atmospheric temperature and improves the accuracy of the ultrasonic distance measurement by correcting the sound speed. Arduino controls measurements and calculates the water level. All components of the system are assembled into a device holder. Experiments with this system show that the water level measured by the system is very close to the actual value. This system is also inexpensive and easy to install and maintain, making it suitable for laboratory use.

A Basic Study on the Development of Oily Sludge Treatment System by Ultrasonic Waves (초음파 오일 스러지 처리 시스템 개발을 위한 기초 연구)

  • 이은방
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.1
    • /
    • pp.57-67
    • /
    • 2000
  • All crude oil carries a little of water, sand, and mineral sediment molecules tightly bounded with hydrocarbons. The result is the gradual precipitation of these heavier elements into thick, granular petroleum by products known as crude oil sludge. The oily sludges in ship tanks and in storage facilities have to be treated efficiently in order to keep the security and the capacity of storage facilities, to protect a serious environmental pollution, and to retrieve lost resource. The oily sludge treatment system should be designed to satisfy requirements mentioned in safe work condition. As a basic study, in this paper, an oily sludge treatment system by ultrasonic waves was proposed. Then, the features of ultrasonic energy and recovery of sludge with ultrasonic waves are investigated by experiments. As results, we found that ultrasonic waves are a new energy to flow oil sludge environment-friendly in safe work condition. In addition, it was shown that ultrasonic energy is more efficient than thermal energy in treating oil sludge, and that the volume of wastes for disposal is reduced remarkably.

  • PDF

Ultrasonic Spray Nozzle System with Piezoelectric Device for Chemicals Dispersion (압전체를 이용한 약품 분사용 초음파 분사 노즐 시스템)

  • 고재석;김용현;김형수;조순행;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.65-71
    • /
    • 2003
  • A new type of ultrasonic spray nozzle was fabricated employing a piezoelectric device. The spray nozzle was designed to disperse chemicals in a water treatment mixing tank. The piezoelectric properties in ultrasonic spray nozzles were optimized to improve the dispersion of chemicals. The piezoelectrics were packaged in an aluminum case with silicone resin for the aqueous solution proof packaging. Chemicals were dispersed with high efficiency and the chemicals consumption was reduced by the ultrasonic fine particle spraying. The concentration of Escherichia coli in mixing tank was decreased remarkably using ultrasonic spray nozzle dispersion compared to the conventional methods.

  • PDF

Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound (초음파에 의한 수중의 난분해성 방향족화합물의 반응특성)

  • Sohn, Jong-Ryueul;Mo, Se-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

A study on the reliability enhancement of Ultrasonic water treatment system to boiler (보일러 초음파 수처리장치의 신뢰성향상에 관한 연구)

  • Kim, Dae-Ryong;Lee, Keun-Oh
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-293
    • /
    • 2013
  • This study was carried out to diminish the formation of scale in boilers which is one of the defect elements when they are operating. The defect relating to scale can cause a fatal impact on the explosion of boilers due to the overheating of their tubes, or it can affect the flow of water inside boilers with its bad circulation and result in a disparity of water inside the equipment. Heat transfer in the scale is low comparing to the boiler material, so it can lead to energy losses and has also impact on the global warming. In 2005, the Korean government introduced a system which requires boiler users to install the equipment which can prevent or eliminate the formation of scale to improve the management of water quality in boilers. The study on the techniques for preventing or eliminating the formation of scale started in 1821 and since then subsequently there have been lots of similar studies. The first one was about the scale reduction using potato starch. Since an ultrasonic scale preventer developed by a scientist from a Russian acoustic institute was introduced in1993, a variety of equipment of this kind have been disseminated in Korea. There has been a need to demonstrate the condition for the best performances of such equipment. Boilers are mostly composed of the main body and 288 the tube with a circular curved surface. I carried out a demonstration study on a circular tube which affects the scale defect the most among the boiler components. As a result of it, I found out the fact that the ultrasonic wave needs to reach a certain level of sound pressure and frequency to affect the formation of scale.

Performance Evaluation of Hybrid SBR Aerobic Digestion combined with Ultrasonication by using a Mathematical Model (초음파 결합형 SBR 호기성 소화 모델과 영향 예측)

  • Kim, Sung Hong;Lee, Dong Woo;Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.897-905
    • /
    • 2012
  • Based on the activated sludge model, a simple aerobic digestion model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) equipped with ultrasonicator was composed and performed in this study. The results are as follows. Aerobic digestion efficiency can be increased by adopting ultrasonic pretreatment. For the 5 days of SRT, 24 % of particulate component is predicted to be removed by ultrasonic pretreatment and aerobic digestion. This is 7 %p higher than that of conventional aerobic digestion. A Hybrid SBR aerobic digestion combined with ultrasonication shows higher digestion efficiency than aerobic digestion and ultrasonic pretreatment system. In case of this hybrid system, the digestion efficiency was predicted up to 49 % when the ultrasonication was performed every 2 hours, repeatedly. However, excessive treatment like every hours of ultrasonication in an aerobic digestion process results in adverse effect on TCOD removal because biomass disintegrated completely and the solubilized COD can not be used for the biomass synthesis again.

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;JEONG, Tae-Hwan;Kim, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: By applying an ultrasonic mechanical device to the liquid fertilizer storage in the pig dropping treatment plant, the initial odor of the odor source is reduced, and the air dilution drainage of the complex odor is fundamentally recognized to facilitate odor treatment on the mechanical and chemical biological treatment devices at the rear. Research design, data and methodology: The odor concentration on the site boundary was measured to confirm the state of reduction. In order to prevent the spread of odor from the collection of the pig dropping treatment plant, it was measured by installing an ultrasonic generator inside the installation wall after installing the sealing wall. Results: The average value of the March and April measurement data remained close to neutral at 8.2 after 8.6 treatment before pH treatment, decreased 97.3% from 462 mg/L before SS treatment to 10.5 mg/L after treatment, and the composite odor was reduced by 85% from 20 to 3 before treatment. It was confirmed that ammonia (NH3) was reduced by 99% from 5.8 ppm to 0.09 ppm, and general bacteria were also reduced by 99% from 3,200 CFU/mL to 57 CFU/mL Conclusion: Applying the ultrasonic air ejector hybrid system and zigzag air complex module development product to resource circulation centers or sewage treatment facilities is thought to reduce inconvenience to residents due to odors caused.

Study on the heat and mass transfer in ultrasonic assisting vacuum membrane distillation

  • Guo, Hao;Peng, Changsheng;Ma, Weifang;Yuan, Hetao;Yang, Ke
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.293-310
    • /
    • 2017
  • An ultrasonic assisting vacuum membrane distillation (VMD) system was designed to promote the heat and mass transfer in membrane distillation (MD) process. Both the effects of operating conditions and ultrasonic parameters to permeation flux in this process were investigated; the heat and mass transfer mechanism was also being discussed in this paper. The results showed that the performance of VMD process was improved significantly by ultrasonic assisting. The permeation flux was boosted at a certain feed solution temperature, pressure at permeate side and feed solution velocity whether or not to PP and PTFE. The results also indicated that ultrasonic power and frequency also was the key factor affecting the mass and transfer efficiencies. The feed side transfer coefficient ($K_f$), corresponding to ultrasonic power ($K_f=4.406-0.026{\times}P+7.824{\times}10^{-5}{\times}P^2$) and ultrasonic frequency ($K_f=0.941+0.598{\times}f-0.012{\times}f^2+6.283{\times}10^{-5}f^3$), was obtained and employed in the modeling of ultrasonic assisting VMD process. The modeling results showed that the calculated value of $K_f$ aligned with experimental results well. Both variations of temperature polarization coefficient (TPC) and concentration polarization coefficient (CPC) were studied based on the obtained data. The results showed that both TPC and CPC were improved obviously by the ultrasonic parameters.

Comparison of the effect of hand instruments, an ultrasonic scaler, and an erbium-doped yttrium aluminium garnet laser on root surface roughness of teeth with periodontitis: a profilometer study

  • Amid, Reza;Kadkhodazadeh, Mahdi;Fekrazad, Reza;Hajizadeh, Farzin;Ghafoori, Arash
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.101-105
    • /
    • 2013
  • Purpose: The present study aimed to measure root surface roughness in teeth with periodontitis by a profilometer following root planning with ultrasonic and hand instruments with and without erbium-doped yttrium aluminium garnet (Er:YAG) laser irradiation. Methods: Sixty single-rooted maxillary and mandibular teeth, extracted because of periodontal disease, were collected. The crowns and apices of the roots were cut off using a diamond bur and water coolant. The specimens were mounted in an acrylic resin block such that a plain root surface was accessible. After primary evaluation and setting a baseline, the samples were divided into 4 groups. In group 1, the samples were root planned using a manual curette. The group 2 samples were prepared with an ultrasonic scaler. In group 3, after scaling with hand instrumentation, the roots were treated with a Smart 1240D plus Er:YAG laser and in group 4, the roots were prepared with ultrasonic scaler and subsequently treated with an Er:YAG laser. Root surface roughness was then measured by a profilometer (MahrSurf M300+RD18C system) under controlled laboratory conditions at a temperature of $25^{\circ}C$ and 41% humidity. The data were analyzed statistically using analysis of variance and a t-test (P<0.05). Results: Significant differences were detected in terms of surface roughness and surface distortion before and after treatment. The average reduction of the surface roughness after treatment in groups 1, 2, 3, and 4 was 1.89, 1.88, 1.40, and 1.52, respectively. These findings revealed no significant differences among the four groups. Conclusions: An Er:YAG laser as an adjunct to traditional scaling and root planning reduces root surface roughness. However, the surface ultrastructure is more irregular than when using conventional methods.

Treatment of decomposition of Aqueous 2,4-Dichlorophenol Solution by Ultrasonic Irradiation (초음파 검사에 의한 수중의 2,4-Dichlorophenol 분해처리)

  • 손종렬;문경환;김영환;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.54-62
    • /
    • 1999
  • 2,4-Dichlorophenol was known pollutants caused by the endocrine disruptor into the refractory substances of environment and this is difficult to be degradable by conventional methods. Therefore, a considerable interest has been devoted to developing new process where 2,4-Dichlorophenol can easily decomposed. In this study, the series of ultrasonic irradiation for removal of 2,4-Dichlorophenol has been selected as a model reaction in the batch reactor system in order to obtain the basic data investigate the influence of various experimental parameters such as concentration, pH, reaction temperature, acoustic intensity. The products obtained form the ultrasonic irradiation were analysed by GC/MS and HPLC. The formation of $H_2O_2$, a well-known the strong oxidant was found proportionally to increase with irradiation time. The intermediates of ultrasonic irradiation of 2,4-Dichlorophenol were identified as HCl, catechol, hydroquinone, o,p-benzoquinone, muconic acid, and maleic acid. The final products of this was $CO_2$ and $H_2O$. As the decomposition of 2,4-Dichlorophenol proceeds by the ultrasonic irradiation, the pH of 2,4-Dichlorophenol containing aqueous solution increases slowly, The decomposition of 2,4-Dichlorophenol was found to be occured fast in the basic medium. In general, the rate of reaction is proportional to the reaction temperature obeying the Arrhenius' law. However, in the ultrasonic irradiation, this suggests as the reaction temperature increase the decomposition rate of the reactant decreases. This result meant that the increase of reaction temperature due to the increase of vapor pressure of water accelerated the decrease of acoustic intensity which was can be proportional to the decomposition rae of these compounds. It was found that more than 80% of phenol solution was removed within hours in all reaction conditions. The reaction order in the degradation of the 2,4-Dichlorophenol compounds was verified as the Pseude-first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds caused by endocrine disruptor as 2,4-dichlorophenol could be removed by the ultrasonic irradiation with radicals, such as $H{\;}{\cdot}{\;}and{\;}OH{\;}{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it apeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory substances caused by endocrine disruptor which are difficult to be decomposed by the conventional methods.

  • PDF