• 제목/요약/키워드: Ultrasonic velocities

검색결과 123건 처리시간 0.02초

초음파 속도를 이용한 Type 316LN 스테인리스 강의 크리프 손상 평가 (Evaluation of the creep damage of the Type 316LN stainless steel by the ultrasonic wave velocity)

  • 이원;노경용;윤송남;김우곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.818-823
    • /
    • 2005
  • Creep damage is one of the mosl important characteristics for the stability of high temperature structures such as huge energy converting facilities. Creep failure of Type 316LN stainless steel is highly correlated to generation and growth of the voids. In this paper, in order to investigate the correlation of creep rupture time and ultrasonic parameters (group velocity, angular velocity), creep-damaged Type 316LN specimens and measurements for the ultrasonic parameters were made. However, bi-directional measurements were applied along the load direction and the perpendicular direction to the load line by means of the contact type probe of which the central frequencies are 10MHz, 15MHz and 20MHz. Analyzing the angular velocities of the ultrasonic signals obtained from the load direction, it was confirmed that the angular velocities were declined as the creep time passed when 15MHz and 20MHz probes were used. Also, the group velocities were declined for all three frequencies as the creep time increased. Thus, positive feasibility for the creep damage evaluation by means of the angular and group velocities was confirmed. Moreover, result of analysis for the ultrasonic signal which was obtained from the perpendicular direction upon the angular and group velocities indicated little variation for both of the angular and group velocities. Therefore, the creep damage is likely to represent anisotropic itself.

  • PDF

Dependencies of Ultrasonic Velocities on the Wall Thickness in Polyvinyl Chloride Cortical Bone Mimics

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권3E호
    • /
    • pp.140-145
    • /
    • 2010
  • In the present study, tubular polyvinyl chloride (PVC) cortical bone mimics that simulate the cortical shell of long bones were used to validate the axial transmission technique for assessing the cortical thickness by measuring the ultrasonic velocities along the cortical shell of long bones. The ultrasonic velocities in the 9 PVC cortical bone mimics with wall thicknesses from 4.0 to 16.1 mm and inner diameters from 40 to 300 mm were measured as a function of the thickness by using a pair of custom-made transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. In order to clarify the measured behavior, they were also compared with the predictions from a theory of guided waves in thin plates. This phantom study using the PVC cortical bone mimics provides useful insight into the dependencies of ultrasonic velocities on the cortical thickness in human long bones.

왕대의 3방향에 따른 초음파적 특성 (Ultrasonic Properties of Phyllostachys bambusoides Sieb. et Zucc depending on Three directions)

  • 강석구;이화형
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권1호
    • /
    • pp.28-32
    • /
    • 2011
  • This research was carried out to examine the ultrasonic properties of $Phyllostachys$ $bambusoids$ Sieb et Zucc depending on three directions for providing the fundamental properties of the Korea traditional flute, Daekeum. The ultrasonic properties of $Phyllostachys$ $bambusoids$ Sieb. et Zucc were found to be different from those of wood, because of the distinctive anatomical structure of bamboo tissue. The ultrasonic velocity of peripheral zone showed higher values of all three directions. The ratio of longitudinal velocities to perpendicular velocities showed 1.16 at peripheral zone, 1.70 at central zone, 1.38 at inner zone respectively. The ratio of radial velocities to tangential velocities were measured as 1.286 at peripheral zone, 1.325 at central zone, 0.829 at inner zone respectively.

목재의 단면적과 수분경사가 초음파 전달 특성에 미치는 효과 (Effects of Cross-Sectional Dimension and Moisture Profile of Small Specimens on Characteristics of Ultrasonic Wave Propagation)

  • 강호양;이관영
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권2호
    • /
    • pp.19-24
    • /
    • 2000
  • 본 논문에서는 목재시편의 횡단연적과 수분경사가 라디에타파인 심재와 번재의 초음파 전달속도에 미치는 효과를 조사하였다. 각 수분경사 모델시편은 함수율이 다른 다섯 개의 소편을 배합하여 만들었다. 횡단면적이 작아질수록 초음파 전달속도는 심재와 변재 모두 4~8% 감소하였다. 수분경사 모델시편을 투과한 초음파 신호를 분석한 결과, 횡단면적이 클수록 저주파 신호가 고주파 신호보다 분명한 주류률 이루었다. 평균 함수율이 같더라도 수분경사가 다르면 시편의 초음파 전달속도는 다르게 나타났다. 초음파 전달속도와 수분경사 모델시편의 내층 평균 함수율의 분포는 함수율에 따라 세 가지 서로 다른 형태를 나타냄이 밝혀졌다.

  • PDF

Isentropic Compressibility for Binary Mixtures of Propylene Carbonate with Benzene and Substituted Benzene

  • Wankhede, D.S.
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.7-13
    • /
    • 2012
  • Ultrasonic velocities (u) for binary mixtures of propylene carbonate (PC) (1) with benzene and substituted benzenes (2) viz. benzene, ethylbenzene, o-xylene and p-xylene have been measured at 288.15-308.15 K over the entire range of composition. The experimental values of ultrasonic velocities (u) have been utilized to calculate isentropic compressibility ($K_s$), intermolecular free length ($L_f$), acoustic impedance (Z).

목재 데크재의 초음파 비파괴시험에 의한 인위적인 결함의 영향평가 (Evaluation of Influences of Artificial Defect of Wood Deck Using Non-destructive Ultrasonic Testing)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.1-8
    • /
    • 2016
  • 목재 데크재에 인위적인 결함인 구멍을 부여하고 이들의 성능평가를 위해 초음파 비파괴 시험법을 적용하였다. 구멍의 크기와 개수를 달리하여 각각에 대한 초음파 전달속도를 측정하고 탄성계수를 산정하여 그 영향을 비교분석하였다. 시험결과 구멍의 크기가 커짐에 따라 초음파 전달속도와 탄성계수는 감소하였으며 이들 상호간에는 직선상관관계를 보였다. 구멍의 크기가 증가하면 초음파의 전달 길이는 증가하며 이에 따라 초음파속도는 감소하였지만 구멍의 크기가 15 mm 이하로 작은 경우에는 구멍이 없는 부재에 비해 그 차이가 작게 나타났다. 구멍의 개수가 많아짐에 따라 초음파 전달속도와 탄성계수는 감소하였으며 이들 상호간에는 높은 직선상관관계를 보였다. 구멍의 개수가 3개인 경우 초음파속도는 약 3.5% 정도 감소한데 비하여 탄성계수는 27% 정도로 현저히 감소하여 더 큰 감소경향을 나타내었다. 이들의 결과로부터 구멍의 크기와 개수는 초음파 전달속도와 탄성계수에 영향을 미치며 구멍의 크기가 크고 개수가 많아질수록 그 영향은 더욱 커질 것으로 여겨진다. 또한 작은 결함의 탐지를 위해서는 초음파 전달속도에만 의지할 것이 아니라 여러 초음파 변수를 고려하여 적용하는 방법을 고려하여야 할 것으로 생각된다.

Cross-Sectional Image Reconstruction of Wooden Member by Considering Variation of Wave Velocities

  • Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권5호
    • /
    • pp.16-23
    • /
    • 2007
  • This study was performed as part of a research project aimed at developing an ultrasonic computed tomography (CT) system of wood for field application. In this reports, we investigate the variation of wave velocities on the cross section of real size wooden structural member to confirm the reason of image distortion on CT image of wood, and then proposed a new image reconstruction method by considering the velocity variation on wood cross section. First of all, the effect of wood anisotropy on ultrasonic velocities of wooden members was investigated. Based on the relationship between ultrasonic velocity and annual ring angle, which was obtained from test results of small clear specimens, ultrasonic velocities of each measuring angle were predicted. Next, they were compared with the ultrasonic velocities measured on five wood disks. There were very large differences between predicted and measured results, thought to be caused by the skewing effect of ultrasound and the presence of juvenile-wood. Based on these findings, a new method was proposed to reconstruct cross-sectional image of wood. By using this method, some distortions on reconstructed images could be removed, and defects were more easily and clearly detected. The minimum size of detectable defect was decreased remarkably, from 33 mm to 13 mm. However, the size of the detected defect was enlarged and the position somewhat shifted to the specimen surface on the CT images, which was also thought to be caused by the skewing effect of ultrasound. Additional research has been planned to solve these problems.

콘크리트 넓은 보의 상태평가를 위한 초음파 속도의 통계학적 분포에 대한 연구 (A Study on the Statistical Distribution of Ultrasonic Velocities for the Condition Evaluation of Concrete Wide Beam)

  • 윤영근;이인복;사민형;오태근
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.98-104
    • /
    • 2017
  • The ultrasonic pulse velocities of pressure, shear, and Rayleigh waves ( P-, S-, and R- waves) have been used for the condition evaluation of various concrete structures, but the statistical distribution according to the wave type has not been studied clearly in view of data reliability and validity. Therefore, this study analyzed the statistical distribution of P-, S-, R-wave velocities in concrete wide beams of $800{\times}3100mm$ (width ${\times}$ length) with a thickness of 300 mm. In addition, we investigated an experimental consistency by the Kolmogorov-Smirnov goodness-of-fit test. The experimental data showed that the R-, S- and P- wave velocities in order have better statistical stability and reliability for in situ evaluation because R- and S-waves are less sensitive to confinement and boundary conditions. Also, good correlations between wave velocities and strength and modulus of elasticity were found, which indicate them as appropriate techniques for estimating the mechanical properties.

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF