• 제목/요약/키워드: Ultrasonic pulse velocity, Dynamic modulus of elasticity

검색결과 21건 처리시간 0.025초

양생조건이 경량골재 콘크리트의 ASR에 미치는 영향 (Effect of Curing Conditions on the ASR of Lightweight Aggregate Concrete)

  • 성찬용;김성완;민정기
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.38-46
    • /
    • 1993
  • This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.

  • PDF

폴라프로필렌 섬유보강 흙콘크리트 포장재료의 투수 특성 (Permeability of Polypropylene Fiber Reinforced Soil Concrete Pavement Material)

  • 성찬용
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.13-19
    • /
    • 2004
  • This study was performed to evaluate permeable properties of eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The fIexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were increased with increasing the content of coarse aggregate, soil compound and polypropylene fiber. The flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were 259 MPa, 3,527 m/s and 275 ${\times}$ 102 MPa at the curing age of 28 days, respectively. The coefficient of permeability was decreased with increasing the content of coarse aggregate and soil compound, but it was increased with increasing the content of polypropylene fiber. Accordingly, this concrete can be used for farm road.

폴리프로필렌 섬유보강 에코콘크리트의 동결융해 특성 (Freezing and Thawing Properties of Polypropylene Fiber Reinforced Eco-concrete)

  • 성찬용
    • 한국농공학회논문집
    • /
    • 제48권2호
    • /
    • pp.59-66
    • /
    • 2006
  • This study is performed to evaluate freezing and thawing properties of polypropylene fiber reinforced eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The mass loss ratio is decreased with increasing the content of natural coarse aggregate and soil compound, but it is increased with increasing the content of polypropylene fiber. The ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are increased with increasing the content of natural coarse aggregate and soil compound, but it is decreased with increasing the content of polypropylene fiber. The mass loss ratio, ultrasonic pulse velocity, dynamic modulus of elasticity and durability factor are $1.49{\sim}3.32%,\;1,870{\sim}2,465\;m/s,\;77X10^2{\sim}225X10^2\;MPa\;and\;84.6{\sim}92.8$ after freezing and thawing 300 cycles, respectively. These eco-concrete can be used for environment-friendly side walk and farm road.

재생굵은골재를 사용한 초유동 콘크리트의 강도 및 비파괴 특성 (Strengths and Non-destruction Properties of Super Flow Concrete Using Recycled Coarse Aggregate)

  • 성찬용
    • 한국농공학회논문집
    • /
    • 제47권1호
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate strengths and non-destruction properties of super flow concrete using recycled coarse aggregate. At the curing age of 28 days, the compressive strength was 22.7-37.5 MPa, the splitting tensile strength was $2.65\~3.73$ MPa, the flexural strength was $5.78\~6.86$ MPa, the ultrasonic pulse velocity was $3,103\~3,480$ mis, the dynamic modulus of elasticity was $3.401{\times}104\~4.521{\times}104$MPa, respectively. The strengths, ultrasonic pulse velocity and dynamic modulus of elasticity of super flow concrete were decreased with increasing the content of recycled coarse aggregate. The super flow concretes using recycled coarse aggregate were improved by substitution in the range of less than the fly ash content 30010 and recycled coarse aggregate content $75\%$.

Characteristics of Lightweight Concrete and Their Application in Structures

  • 성찬영
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

패분 콘크리트의비파괴 특성에 관한 실험적 연구 (An Experimental Study on Nondestructive Properties of Crushed Oyster Shell Concrete)

  • 성찬용
    • 한국농공학회지
    • /
    • 제42권2호
    • /
    • pp.93-98
    • /
    • 2000
  • This study is performed to evalute experimentally the nondestructive properties on the concrete that is treated with crushed oyster shell powder of 0.15m or smaller in diameter. The ultrsonic pulse velocity of crushed oyster shell concrete(COSC) is in the range of 4.110-4.267m/s, and the dynamic modulus of elasticity of COSC range from 288$\times$10$^3$ to 318 $\times$10$^3$kgf/$\textrm{cm}^2$. The ultrasonic pulse velocity and dynamic modulus of elasticity are similar to those of normal portland cement concrete. The highest ultrasonic pulse velocity and dynamic modulus of COSC are measured at the 2.5% addition rate by weight of crushed oyster shell powder. The acid-resistance in increased of the content of crushed oyster shell powder. The acid-resistance of COSC with 15% addition rate by weight of crushed oyster shell power is 1.6 times greater than that of normal portland cement concrete. It is concluded that the addition of crushed oyster shell powder to normal portland cement concrete contributed to improve the nondestructive properties of concrete.

  • PDF

A study on dynamic modulus of self-consolidating rubberized concrete

  • Emiroglu, Mehmet;Yildiz, Servet;Kelestemur, M. Halidun
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.795-805
    • /
    • 2015
  • In this study, dynamic modulus of elasticity of self-consolidating rubberized concrete is evaluated by using results of ultrasonic pulse velocity and resonance frequency tests. Additionally, correlation between dynamic modulus of elasticity and compressive strength results is compared. For evaluating the dynamic modulus of elasticity of self-consolidating rubberized concrete, prismatic specimens having $100{\times}100{\times}500$ mm dimensions are prepared. Dynamic modulus of elasticity values obtained by non-destructive measurements techniques are well agreed with those given in the literature.

양생조건(養生條件)이 인공경량골재(人工輕量骨材)콘크리트의 알카리-실리카 반응(反應)에 미치는 영향(影響) (Effect of Curing Conditions on the Alkali-Silica Reaction of Synthetic Lightweight Aggregate Concrete)

  • 김성완;성찬용
    • 농업과학연구
    • /
    • 제18권2호
    • /
    • pp.140-147
    • /
    • 1991
  • 이 논문(論文)은 양생조건(養生條件)에 따른 알카리 실리카 반응(反應)이 인공경량골재 콘크리트의 공학적(工學的) 성질(性質)에 미치는 영향에 관한 것으로서, 이 연구(硏究)에 의하여 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 1 각 콘크리트의 팽창은 재령이 증가함에 따라 증가하였으며, 재령 90일에서 Type A, B, C 및 D 콘크리트의 팽창율은 각각 0.173%, 0.575%, 0.230% 및 0.680%로 되었다. 특히, Type D는 Type A 콘크리트 보다 3.93 배(倍)의 팽창율을 보였고, 팽창이 증가함에 따라 균열폭도 증가되었으며 팽창율 0.680%에서 균열의 최대폭은 0.5 mm를 나타냈다. 2. 각 콘크리트의 동탄성 계수는 재령이 증가할수록 증가하여, 재령 30일에서 최대치를 나타냈고, 그 이후부터는 점차 감소하였다. 또한, 재령 90일에서 Type A, B, C 및 D 콘크리트의 동탄성 계수 손실율은 각각 24.3%, 33.7%, 28.1% 및 37.0% 로 되었으며, Type D는 Type A 콘크리트 보다 1.52 배(倍)의 손실율을 보였다. 3. 각 콘크리트의 초음파 진동속도는 재령이 증가할수록 증가하여 재령 30일에서 최대치를 나타냈고, 그 이후부터는 점차 감소하였다. 또한, 재령 90일에서 Type A, B, C 및 D 콘크리트의 초음파 진동속도 손실율은 각각 6.4%, 8.7%, 8.5% 및 14.2% 증가하였으며, 손실율은 Type D가 Type A 콘크리트 보다 2.21 배(倍) 크게 나타났다. 4. 동탄성 계수와 초음파 진동속도와의 상관관계(相關關係)는 고도(高度)의 유의성이 인정되었으며, 동탄성 계수는 초음파 진동속도가 증가할수록 증가되었고, 감소할수록 감소하였다. 또한, 동탄성 계수의 감소율은 각 재령에서 초음파 진동속도 감소율 보다 2-7배 이상 크게 나타났다. 5 동탄성 계수와 초음파 진동속도는 팽창이 증가함에 따라 감소하였고, 그 감소율은 재령이 증가함에 따라 증가되었으며, 팽창의 증가율은 동탄성 계수와 초음파 진동속도의 감소율 보다 더 크게 나타났다.

  • PDF

초경량 폴리머 콘크리트의 공학적 특성 (Engineering Properties of Surlightweight Polymer Concrete)

  • 성찬용;김경태
    • 한국농공학회지
    • /
    • 제39권4호
    • /
    • pp.75-81
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. The unit weight was in the range of 0.849~0.969t/$m^3$, the unit weights of those concrete were decreased by 58 ~ 63% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, and compressive strength was increased by 93% and bending strength by 364% than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2, 346~2, 702m/s, which was low compared to that of the normal cement concrete. 4. The dynamic modulus of elasticity was in the range of $1.561{\times} 10{^5}~1.916{\times} 10{^5}kgf/cm^2$, which was approximately 52~98% of that of the normal cement concrete. 5. The compressive and bending strength were increased with the increase of unit weight. But, the dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with the increase of unit weight.

  • PDF

재생골재와 산업부산물을 사용한 콘크리트의 물리.역학적 특성 (Physical and Mechanical Properties of Concrete Using Recycled Aggregate and Industrial By-Products)

  • 성찬용;김영익
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.128-135
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of concrete using recycled aggregate and industrial by-products. The test results show that the unit weight, compressive and flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity are decreased with increasing the content of recycled aggregate. But, the absorption ratio is increased with increasing the content of recycled aggregate. The unit weight is 2,237∼2,307 kg/$\textrm{m}^3$, the absorption ratio is 2.96∼4.12%, the compressive strength is 415∼532 kgf/$\textrm{cm}^2$, the flexural strength is 75∼96 kgf/$\textrm{cm}^2$, the ultrasonic pulse velocity is 4,350∼4,949 m/s and the dynamic modulus of elasticity is $390\times10^3\;∼\;465\times10^3$ kg f/$\textrm{cm}^2$, respectively These recycled aggregate concrete can be used for high strength concrete.