• Title/Summary/Keyword: Ultrasonic pulse signal

Search Result 119, Processing Time 0.024 seconds

Development of Obstacle Recognition System Using Ultrasonic Sensor (초음파 센서를 이용한 장애물 인식 장치 개발)

  • Yu, Byeonggu;Kwon, Sunwook;Kim, Jusung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • In this Paper, we Propose the Low-cost Obstacle Recognition System Utilizing the Ultrasonic Sensor. Developed Obstacle Recognition System can be used to Aid the Visually Impaired Person. The Existence of the Obstacle is Notified to the Person through the Embodied Electronic Vibration Motor. The Timing Difference from the Recognition to the Notification Indicates the Distance to the Obstacle. Pulsed Ultrasonic Signal Controlled by MCU is Utilized and the Reflected Pulse through the Obstacle gives the Developed System the Existence of the Obstacle and the Distance to the Object. Pulse is sent Repetitively to Improve the Detection Accuracy. Developed Apparatus gives 30 Degree of Detection Angle and 2cm-30cm of the Detection Range when the Apparatus is Tested under Normal Walking Environment.

UT Inspection Technique of Cast Stainless Steel Piping Welds Using Low Frequency TRL UT Probe (저주파수 TRL 탐촉자를 이용한 Cast Stainless Steel 배관 용접부 초음파탐상기법)

  • Shin, Keon-Cheol;Chang, Hee-Jun;Jeong, Young-Cheol;Noh, Ik-Jun;Lee, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • Ultrasonic inspection of heavy walled cast austenitic stainless steel(CASS)welds is very difficult due to complex and coarse grained structure of CASS material. The large size of anisotropic grain strongly affects the propagation of ultrasound by severe attenuation, change in velocity, and scattering of ultrasonic energy. therefore, the signal patterns originated from flaws can be difficult to distinguish from scattered signals. To improve detection and sizing capability of ID connected defect for heavy walled CASS piping welds, the low frequency segmented TRL Pulse Echo and Phased Array probe has been developed. The experimental studies have been performed using CASS pipe mock-up block containing artificial reflectors(ID connected EDM notch). The automatic pulse echo and phase array technique is applied the detection and the length sizing of the ID connected artificial reflectors and the results for detection and sizing has been compared respectively. The goal of this study is to assess a newly developed ultrasonic probe to improve the detection ability and the sizing of the crack in coarse-grained CASS components.

  • PDF

SH-EMAT에 의한 Digital 신호처리에 관한 연구

  • 김재열;박환규;조영태;김형일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.198-203
    • /
    • 1993
  • In this study, byusing EMAT(Electro Magnetic Acoustic Transducer) the artificial slit is installed on 12B-SUS pipe test piece. By mading 4 cycle SH-bust wave (EMA) incidence to 45 .deg. angle, the signaldata of pulse, which is recevied from EMAT translated intodigital-signal-processing-method SSP and Deconvolution method by using FACOM. Results of these indicated that (1) this method of this study shows exellent result more than Ultrasonic testing method; (2) noise is well removed by SSP using signal dataa and resolving power and S/N ratio are advanced; (3) regradless of Ultrasonic wave, whichhas properties of generalstainless steel is generated into multiscattering and reflection phenomena, the resolving power of more than two times is progressed by being translated into Decon-volution method; and (4) as addition-averaging-processing number is increaing, the resolving power and S/N ratio are improved and the satisfactory signal is obtained.

A Study on the Stationary Canceler in the Ultrasonic Pulse Doppler System (초음파 펄스 도플러 시스템의 Stationary Conceler에 대한 연구)

  • 김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 1985
  • In this paper, clutter in ultrasound pulsed Doppler system is analyzed mathematically. And stationary canceler which reduce the clutter is designed. The operating characteristics of the stationary canceler is investigated in body (in vivo) by audio signal and spectrum analyzer.

  • PDF

Bioengineering Approaches to Quantitation of Diagnosis and Treatment Monitoring for Patients with Liver Cancer: Ultrasonic Image Processing by Kalman Filtering (의공학적 기법에 의한 간암의 검진과 치료경과의 정량 : 칼만 필터링 기법에 의한 초음파 영상 처리)

  • 우광방;남상일
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.5-12
    • /
    • 1985
  • In this paper Kalman filtering technique is applied to ultrasound signal to improve resolution capability, Ivhlch is in use of diagnostic imaging systems. The main advantage of Kalman filter algorithm for the analysis of reflected ultrasound signal is its recursive structure which can be easily adapted to tlme varing system. Because soft-tissues, such as liver, act as distributed acoustic low-pass filters which continually change the propagating pulse. tIne can put to practical use above advantage to find a suitable signal generallng model. In state-space description of the system, the 6th order system produces tl)e 1)esc spectral approximation to the source pulse As a result of spectrum analysis, 6th order estimator for two closely spaced ((p.5 mm) reflectors enhances resolution by 4dB-lOdB. By using this result, the possibility to detect even minute tumor is demonstrated.

  • PDF

A study on the digital signal processing by shear horizontal-electro magnetic acoustic transducer (SH-EMAT에 의한 Digital 신호처리에 관한 연구)

  • Kim, Jae-Yeol;Park, Hwn-Kyu;Cho, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.32-40
    • /
    • 1994
  • In this study by using EMAT(electro magnetic acoustic transducer)the artificial slit is installed on 12B-SUS pipe test piece. By making 4 cycle SH-burst (EMA) incidence to 45 .deg. angle, the signal data of pulse, received from EMAT are translated into digital-signal-processing- method SSP(Split Spectrum Processing) and Deconvolution method. The main conclusions obtained are as follows; (1) the signal data received from EMAT are translated with digital signal proc- essing of SSP-method and Deconvolution-method and this method shows exellent results more than Ultrasonic testing method does; (2) noise can well be removed by SSP with signal data, and resolution and S/N ratio are advanced; (3) when used with Ultrasonic wave general stainless steel has proporties of multiscattering and reflection phenomena, but resolution is progressed by using Deconvolution method;and (4) as addition-averaging-processing mumber is increasing, the resolution and S/N ratio are improved and the satisfactory signal is obtained.

  • PDF

Time Reversal Beam Focusing of Ultrasonic Array Transducer on a Defect in a Two Layer Medium

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • The ability of time reversal techniques to focus ultrasonic beams on the source location is important in many aspects of ultrasonic nondestructive evaluation. In this paper, we investigate the time reversal beam focusing of ultrasonic array sensors on a defect in layered media. Numerical modeling is performed using the commercially available software which employs a time domain finite difference method. Two different time reversal approaches are considered - the through transmission and the pulse-echo. Linear array sensors composed of N elements of line sources are used for signal reception/excitation, time reversal, and reemission in time reversal processes associated with the scattering source of a side-drilled hole located in the second layer of two layer structure. The simulation results demonstrate the time reversal focusing even with multiple reflections from the interface of layered structure. We examine the focusing resolution that is related to the propagation distance, the size of array sensor and the wavelength.

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

The Features Extraction of Ultrasonic Signal to Various Type of Defects in Solid (고체내부의 결함형태에 따른 초음파 신호의 특징추출)

  • Shin, Jin-Seob;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.62-67
    • /
    • 1995
  • In this paper, the features extraction of reflected ultrasonic signals from various type of defects existing in Al metal has been studied by digital signal processing. Since the reflected signals from various type of the defects are ambiguous in features distinction from effects of noise, Wiener filtering using AR (auto-regressive) technique and least-absolute-values norm method has been used in features extraction and comparison of signals. In this experiment, three types of the defect in aluminum specimen have been considered: a flat cut, an angular cut, a circular hole. And the reflected signal have been measured by pulse-echo methods. In the result of digital signal processing of the reflected signal, it has been found that the features extraction method have been effective for classification of the reflected signals from various defects.

  • PDF

A study on the determination of Ultrasonic Travel Time by Norm Phase-Time Method (위상시간법에 의한 초음파전파시간의 결정에 관한 연구)

  • 이은방
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 1994
  • In this paper, a new algorithm to measure the ultrasonic travel time is proposed, which is fundamental to estimate distance depth and volume in several media. Pulse wave has been used to measure travel time of transmitted signal. However, due to the characteristic of transducer and propagation, the received signal is so distorted that it is difficult to measure travel time, which is propagation, the received signal is so distorted that it is difficult to measure travel time, which is to be time difference between transmitted and received signals. In this proposed method, transmitted and received signal are transformed respectively into norm phase newly designed by this paper and displayed on phase-time curve. And travel time is simply determined by the arithmetic numerical mean of time difference at the identical norm phase on the phase-time curves of transmitted and received signals. This method has several features; firstly, travel time is calculated analytically with high accuracy by least square error method, secondly, it is useful to compare the difference of signal magnitude for time information, thirdly, noise and discrete errors are relatively small, finally, the measurement accuracy is not influenced by D.C. bias. In particular, this method is useful and applicable to measuring very short distance and sound speed with high accuracy.

  • PDF