• 제목/요약/키워드: Ultrasonic melt treatment

검색결과 5건 처리시간 0.019초

초음파 용탕처리를 이용한 알루미늄 피스톤의 조직 미세화 (Refinement of Microstructures for Aluminum Piston through Ultrasonic Melt Treatment)

  • 이상화;정재길;이정무;조영희;윤운하;안용식;윤동춘;이정근;류관호
    • 한국주조공학회지
    • /
    • 제36권2호
    • /
    • pp.53-59
    • /
    • 2016
  • The effects of ultrasonic melt treatment on the microstructures of aluminum piston were examined at five observation parts having different cooling rates. The microstructure of aluminum piston consisted of primary Si, eutectic Si, and various types of intermetallic compounds. Regardless of cooling rate, the ultrasonic melt treatment transformed dendritic eutectic cells to equiaxed eutectic cells and it decreased the sizes of eutectic Si and intermetallic compounds that exist at eutectic cell boundaries. In the absence of ultrasonic treatment, coarse primary Si particles were severely segregated and its size was increased with decreasing the cooling rate. The ultrasonic treatment decreased the size of primary Si particles from $25.5{\sim}31.0{\mu}m$ to $17.6{\sim}23.1{\mu}m$, depending on the cooling rate. In the presence of ultrasonic treatment, relatively fine primary Si particles were homogeneously distributed throughout the piston. In addition, the ultrasonic treatment increased the population density and area fraction of fine primary Si particles.

초음파 진동에 의한 A328 알루미늄 합금 용탕의 탈가스 (Degassing of Molten A328 Aluminum Alloy by Ultrasonic Vibration)

  • 최경환;장훈;임정규;김상섭;조규섭
    • 한국주조공학회지
    • /
    • 제31권6호
    • /
    • pp.342-346
    • /
    • 2011
  • A328 alloy is an attractive candidate for recycle-friendly aluminum alloy in the recycling of automotive components. In this study, A328 alloy melt was degassed by ultrasonic vibration and the effect of treatment time on the density, fluidity and mechanical properties was investigated. Experimental results reveal that a constant value of density can be reached after less than 180 seconds of ultrasonic treatment time, but the density decreased when the treatment time was 300 seconds. Ti which was dissolved from the horn during ultrasonic treatment reduced the fluidity of melt. After degassing by ultrasonic vibration for 180 seconds, tensile strength increased from 201MPa to 250MPa, and elongation increased from 2.38% to 3.50%, however, further treatment deteriorated the mechanical properties.

Morphology and mechanical properties of LDPE/PS blends prepared by ultrasound-assisted melt mixing

  • Ryu, Joung Gul;Kim, Hyungsu;Kim, Myung Ho;Lee, Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.147-152
    • /
    • 2004
  • Ultrasound-assisted melt mixing was applied to blending polystyrene (PS) and low density polyethylene(LDPE). The influence of the ultrasonic irradiation on the morphology and mechanical properties of the blends was investigated. It was observed that the domain sizes of the blend were significantly reduced and phase stability was well sustained even after a thermal treatment. Such morphological feature was consistent with the improvements in mechanical performance of the blends. The desirable results of ultrasonic compatibilization are mainly attributed to the in-situ formation of PS-LDPE copolymers as confirmed by a proper separation experiment. An important relationship between ultrasonic irradiation time and mechanical properties is revealed and an issue on the thermal stability of the blend is discussed.

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.