• Title/Summary/Keyword: Ultrasonic measurement

Search Result 833, Processing Time 0.027 seconds

Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

  • Kim, No-Hyu;Lee, Sang-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.577-582
    • /
    • 2003
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process.

Design of the Calibration System for Determining the Sensitivity of Ultrasonic Transducer (초음파 변환기의 감도 교정 시스템 구성)

  • 사공성대;조문재;최봉열
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.200-207
    • /
    • 1999
  • In this paper, a precise sensitivity measurement system of ultrasonic transducer in the frequency range from 1 MHz to 15 MHz, which can implement the reciprocity principle is constructed. All of the elements of this system such as the ultrasonic preamplifier, ultrasonic absorber, water tank, water degassing system, and four-axes translator and reflector are constructed. For the performance evaluation of the calibration system, a standard hydrophone precisely calibrated from PTB(Physikalisch Technische Bundesanstalt) in Germany are used. And the system parameters which affected the evaluation of the measurement accuracy and the reproducibility in various measuring conditions are considered. The measurement uncertainty of the calibration system is estimated within $\pm$ 2.0㏈.

  • PDF

Consideration on the Experimental Measurement of Flaw Height of Welds by Ultrasonic Testing (초음파(超音波) 탐상법(探傷法)에 의(依)한 용접부(熔接部)의 결함(缺陷)높이 측정(測定)에 관한 연구(硏究))

  • Ahn, Il-Young;Yin, Tong-Kyu;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.1
    • /
    • pp.10-16
    • /
    • 1982
  • This study was carried out to measure the flaw height of welds in consideration of the effective probe angle in ultrasonic oblique detection. Specimens with inserted artificial flaws were made and flaw heights were estimated from detecting these specimens. Two different methods were applied to estimate flaw heights. From the result of the experiment, flaw height could be measured within the accuracy of 15% percent error and the difference between the probe distance method and beam path method is about 5% relatively small. It is considered that the results obtained this experimental study could be helpful informal ions for measuring flaw height.

  • PDF

USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization (무인 이동 로봇 위치추정을 위한 초음파 위성 시스템)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

Computer Simulation of Multiple Reflection Waves for Thickness Measurement by Ultrasonic Spectroscopy (초음파 Spectroscopy에 의한 두께측정을 위한 다중반사파의 시뮬레이션)

  • Park, I.G.;Han, E.K.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 1992
  • Ultrasonic spectroscopy is likely to become a very powerful NDE method for detection of microfects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides a useful information that cannot be obtained by a conventional ultrasonic measuring system. In this paper, we considered a thin film below the limit of ultrasonic distance resolution sandwitched between two substances as acoustical analysis model, demonstrated the usefulness of ultrasonic spectroscopic analysis technique using information of ultrasonic frequency for measurements of thin film thickness, regardless of interference phenomenon and phase reversion of ultrasonic waveform. By using frequency intervals(${\triangle}f$) of periodic minima from the ratio of reference power spectrum of reflective waveform obtained a sample to power spectrum of multiple reflective waves obtained interference phenomenon caused by ultrasonic waves reflected at the upper and lower surfaces of a thin layer, can measured even dimensions of interest are smaller than the ultrasonic wave length with simplicity and accuracy.

  • PDF

Measurement of Interfacial Crack Length by Ultrasonic Scattering Compensation Depending on Thickness Variations of Bonded Dissimilar Components (이종 접합부재의 두께 변화에 따른 초음파 산란 보정에 의한 계면균열 길이의 측정)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • In this paper, the compensation of ultrasonic scattering on interface crack depending on thickness variations of A1/Epoxy bonded dissimilar components was applied to improve measuring accuracy by using ultrasonic attenuation coefficient. The optimum conditions of theoretical value and experimental measuring accuracy by the ultrasonic method in A1/Epoxy bonded dissimilar components have been investigated. From the experimental results, the measurement method of interfacial crack lengths by using ultrasonic attenuation coefficient was proposed and discussed. After the ultrasonic scattering compensation depending on thickness variations of bonded dissimilar components was carried out, the measuring accuracy of interfacial crack length was improved by 5%.

Development of Ultrasonic Transducer for Nondestructive Evaluation of Whole Fruit (과실 비파괴평가용 초음파 변환기 개발)

  • Kim, K.B.;Lee, S.D.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.269-275
    • /
    • 2007
  • In this study, ultrasonic transducers for non-destructive contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the acoustical impedance between piezoelectric material and fruit, various materials were fabricated and evaluated. Also to control the sensitivity and bandwidth of the ultrasonic transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the ultrasonic transducer was designed and fabricated considering the curvature of fruit. The central frequencies of two developed ultrasonic transducers were about 100 kHz and 200 kHz, respectively. With the developed ultrasonic transducers, non-destructive evaluation of the fruit will be possible.

Assessment of Bearing Damage by Ultrasonic Measurement (초음파 측정에 의한 베어링손상 평가)

  • LEE SANG-GUK;LEE In-CHEOL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.395-400
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

  • PDF

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.

A Study on the Fluid Flew with Ultrasonic Forcing by PIV Measurement (초음파가 가진된 유체유동의 PIV계측에 의한 연구)

  • 주은선;이영호;나우정;정진도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1281-1290
    • /
    • 2001
  • A study on the fluid flow with ultrasonic forcing is carried out to obtain data for the turbulence enhancement. A large water tank is made of the transparent acrylic plates and a horizontal flow field is given by setting two acrylic tubes to face mutually on a horizontal line. A 2-dimensional PlV system which is composed of a continuous-output 4W Argon-ion laser, a high-speed video camera, a PC based by an image grabber and a high resolution monitor is used to investigate characteristics of the complex turbulence flow field. And a 2MHz ultrasonic transducer is used fur ultrasonic vibration forcing. Some experiments are carried out at Reynolds numbers of 2,000 and 4,000 and at 7 angles of ultrasonic incidence. In results, the flew velocity vector distribution, kinetic energy and turbulence intensity in both cases of with and without ultrasonic forcing are examined, compared and discussed by using PIV measurement. It is clarified that the ultrasonic forcing into flow field is valid to obtain the turbulence enhancement.

  • PDF