• Title/Summary/Keyword: Ultrasonic manipulation

Search Result 14, Processing Time 0.027 seconds

Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave (정재초음파를 이용한 입자제어 시스템의 유한요소해석)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young;Kim, Ki-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave (정재초음파를 이용한 입자제어 시스템의 유한요소해석)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young;Kim, Ki-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.565-570
    • /
    • 2009
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, an adaptive layer, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

  • PDF

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

Influence of scaling procedures on the integrity of titanium nitride coated CAD/CAM abutments

  • Gehrke, Peter;Spanos, Emmanouil;Fischer, Carsten;Storck, Helmut;Tebbel, Florian;Duddeck, Dirk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.197-204
    • /
    • 2018
  • PURPOSE. To determine the extent of treatment traces, the roughness depth, and the quantity of titanium nitride (TiN) removed from the surface of CAD/CAM abutments after treatment with various instruments. MATERIALS AND METHODS. Twelve TiN coated CAD/CAM abutments were investigated for an in vitro study. In the test group (9), each abutment surface was subjected twice (150 g vs. 200 g pressure) to standardized treatment in a simulated prophylaxis measure with the following instruments: acrylic scaler, titanium curette, and ultrasonic scaler with steel tip. Three abutments were used as control group. Average surface roughness (Sa) and developed interfacial area ratio (Sdr) of treated and untreated surfaces were measured with a profilometer. The extent of treatment traces were analyzed by scanning electron microscopy. RESULTS. Manipulation with ultrasonic scalers resulted in a significant increase of average surface roughness (Sa, P<.05) and developed interfacial area ratio (Sdr, P<.018). Variable contact pressure did not yield any statistically significant difference on Sa-values for all instruments (P=.8). Ultrasonic treatment resulted in pronounced surface traces and partially detachment of the TiN coating. While titanium curettes caused predominantly moderate treatment traces, no traces or detectable substance removal has been determined after manipulation with acrylic curettes. CONCLUSION. Inappropriate instruments during regular plaque control may have an adverse effect on the integrity of the TiN coating of CAD/CAM abutments. To prevent defects and an increased surface roughness at the transmucosal zone of TiN abutments, only acrylic scaling instruments can be recommended for regular maintenance care.

Fabrication and Experiment of Ultrasonic Sensor Integrated Motion Recognition Device for Vehicle Manipulation (초음파 센서를 이용한 모션 인식 차량 통합 제어 장치의 제작 및 실험)

  • Na, Yeongmin;Park, Jongkyu;Lee, Hyunseok;Kang, Taehun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Worldwide, studies on intelligent vehicles for the convenience of drivers have been actively conducted as the number of cars has increased. However, vehicle convenience enabled by buttons lowers the concentration on driving and hence poses as a huge threat to the safety of the driver. The use of one of the convenient features, impaired driving auxiliary equipment, is limited because of its complex usage, and this device also hinders the front view of the driver. This paper proposes a vehicle-control device for controlling the convenient features as well as changes in speed and direction using gestures and motions of the driver. This device consists of an ultrasonic sensor for recognizing movement, an arduino for accepting signal control functions and servo and DC motors apply to various vehicle parts. Firstly, the vehicle-control device was designed using a 3D CAD program known as Solid-works based on the size of the steering wheel. Then, through simulations, a suitable length for minimizing the absorbent between ultrasonic sensors was confirmed using a program known as COMSOL Multiphysics. Finally, simulation results were verified through experiments, and the optimal size of the device was identified through the number of errors.

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

Position Control of Micro Particles in a Fluid Flow Using Ultrasonic Standing Wave (정재초음파를 이용한 유동중 미세 입자 위치 제어)

  • Cho, Seung-Hyun;Seo, Dae-Cheol;Ahn, Bong-Young;Kim, Ki-Bok;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • Using ultrasonic standing waves, micro particles submerged or flowing in fluid can be manipulated. Due to acoustic radiation force of ultrasound, particles are forced to move to pressure nodal or antinodal lines. In this work, we propose a method to control the position of micro particle in a flow by adjusting the frequency of the standing wave. To this end, standing wave field generation system including a few millimeter thick micro channel was established using an immersible ultrasonic transducer. The present generation system works valid in a frequency range between 2.0 MHz and 2.5 MHz. We observed the SiC particles in water moved to pressure nodal lines by the standing wave. The effect of the channel thickness and operating frequency was also investigated. Interestingly, it was shown that the operating frequency have a close relation with the location of the pressure nodal line. Consequently, it fan be said that the position of particle movement rail be controlled by adjusting the ultrasound frequency. The maximum range of the controllable position was about 261 micrometers under the given condition. The resulted observations reveal the possibility of various applications of the ultrasonic standing wave to the manipulation of particles submerged in a fluid.

The Use and Educational Effect of Ultrasonic Phantom in Korean Medicine Obstetrics and Gynecology Clinical Practice Education (한방부인과 임상실습교육에서 초음파 팬텀의 활용과 효과)

  • Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.2
    • /
    • pp.16-27
    • /
    • 2022
  • Objectives: The purpose of this study is to analyze educational effect of ultrasound examination training with ultrasonic phantom in the department of Korean Medicine Obstetrics and Gynecology. Methods: All 4th grade students in 2021 and 2022 of school of Korean Medicine, Dong-Shin University must be trained in the department of Korean Medicine Obstetrics and Gynecology according to ultrasound examination training guideline including Objective Structured Clinical Examination (OSCE). After completing ultrasound examination training, we distributed questionnaires to them about a confidence before OSCE and after OSCE, difficulty in using ultrasound, ultrasound reading, difficulty with probe manipulation and computer operation, ultrasound understanding, clinical usefulness. And then, we analyzed the related factors including descriptive statistics, frequency analysis, student's t-test and paired t-test by SPSS 12.0. Results: Confidence in using ultrasound showed differences among students by gender and year, but it was not statistically significant. The difficulty of ultrasound use and ultrasound reading was at a moderate level, and the gender difference was not significant, and the difference between the practical students by year was statistically significant. The difficulty of the operation of the ultrasonic probe was at a normal level, and the difference between the students in practice by gender and year was not statistically significant. Although they answered that they had a very good understanding of the use of ultrasound, there was a gender difference and it was statistically significant, and practical students by year was not statistically significant. They answered that the effect on clinical use was very sufficient, but it was not statistically significant. The appropriateness of the practice time was evaluated at a moderate level. Conclusions: The use and educational effect of ultrasound examination using ultrasonic phantom in the department of Korean Medicine Obstetrics and Gynecology clinical practice education was very effective.

Acoustic Levitation and Rotation Produced by Ultrasonic Flexural Vibration (초음파 굽힘 진동에 의한 음향 부상 및 회전)

  • Loh, Byoung-Gook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.432-438
    • /
    • 2004
  • Acoustic levitation induced by ultrasonic flexural vibration at 28.4 KHz with a vibration amplitude of 10 micrometers is presented. Levitation of multiple objects along the length of the beam in a gap of 8.3 mm which is the half of acoustic wavelength is experimentally demonstrated. Analytical analysis predicts that levitated objects for the gap of half-the wavelength converges to the center of the gap, which is experimentally verified. It is observed that levitated objects with well-balanced mass distribution are set into rotation due to acoustic streaming. For cylinder-shaped Styrofoam with a diameter of 1.8 mm and a length of 3 mm, measured rotational velocity is 2400 revolution per minute. Applications of standing wave field levitation (SWFL) include manipulation of biological cells and blood constituents in biotechnology, and fine powder in material engineering.

Implementation of automatic mode for remote impact wrench task (로보트를 이용한 원격조작 임팩트렌치 작업의 자동수행 기능부 구현)

  • 박영수;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.832-837
    • /
    • 1991
  • After many years of proliferation, the nuclear industry is indebted for a formidable consequence, the safe management of spent fuel. Naturally, the high radioactivity involved with such process motivates the development of effective telerobotic systems. Nevertheless, the existing master-slave type of tele manipulators are limited in effectiveness by the human operator's limited sensory and manipulation capabilities. This paper presents the result of a research effort to resolve such problems by assigning the slave manipulator a certain degree of intelligence; sensing and actuation. In the presented system, a perception-action loop is achieved using ultrasonic range sensor and laser distance sensor interfaced with the PUMA 760 industrial robot system, and applied to automating impact wrenching task for unbolting the lid of nuclear spent fuel cask. The perception-action loop performs determination of the cask location, collision avoidance and centering of the impact wrench onto the bolt head. To aid the insertion task and to provide versatility a mounting module consisting of an RCC device and an automatic tool changer is designed and implemented. The performance of the developed system is tested on the model cask and the result is given.

  • PDF