• Title/Summary/Keyword: Ultrasonic dispersion

Search Result 167, Processing Time 0.026 seconds

Measurement Ultrasound Attenuation by Using Phase Spectral Difference Method (위상 스펙트럴 차분법에 의한 초음파 감쇠 계수의 측정)

  • Min, Yong-Ki;Choi, Jong-Ho;Lee, Kang-Ho;Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1243-1246
    • /
    • 1987
  • To characterize the biological tissues, the new methods to measure the frequency dependent attenuation are presented in this paper. In general, ultrasonic phase information was assumed by linear function of the frequency. But, the minimum phase function which characterizes the frequency dispersion of tissue was derived in [l]. It is very significant to measure the attenuation by using the minimum phase function to characterize the frequency dispersion of tissue. Therefore, a more efficient method measuring the frequency dependent attenuation are proposed by using the estimated sound velocity and polarity of reflected signal. To verify the algorithms, pulse reflection experiments are performed.

  • PDF

A Study on the Phase Correction of ultratrasound transfer function (초음파 전달함수의 위상보정을 위한 연구)

  • Min, Yong-Ki;Lee, Kang-Ho;Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.713-716
    • /
    • 1988
  • To characterize the bioloical tissues, the new methods to measure the frequency dependent attenuation are presented in this paper. In general, ultrasonic phase information was assumed by linear function of the frequency. But the minimum phase function which characterizes the frequency dispersion of tissue was derived in (2). It is very significant to measure the attenuation by using the minimum phase function to characterize the frequence dispersion of tissue. Also, we propose the phase correcting technique to take advantage of the idea that the distortion of amplitude component when the wave propagates through media.

  • PDF

Particle Monitoring Using Ultrasound in the Gas Flow (초음파를 이용한 기체 유동장내 분진 모니터링)

  • Jhang Kyung-young;Kim Joo-chul;Kim Hong-jun;Hwang Won-ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.78-85
    • /
    • 2004
  • The particle amount monitoring technique using ultrasound is proposed to determine the proper maintenance time of the filter in the supply process of pure gas in the unit of oxygen plant. There are advantages that it is adaptable in high temperature and high pressure, and it is not disturbed by being exposed in the gas flow, and it can be implemented very economically. The applicability of the ultrasonic technique is pre-studied through the theoretical analysis for the dependency of attenuation of ultrasonic wave on the particles in the gas flow. For the purpose, absorption, scattering and dispersion models are considered, and the attenuation by absorption and the change rate of the propagation speed are calculated fur the specific range of particle size and the ultrasonic wave frequency. It was expected by simulation that the absorptive attenuation by particles was the most sensitive to the change of particle amount. The experimental result showed high correspondence with the theoretical expectation so that this ultrasound attenuation measurement was proved to be highly effective for monitoring the amount of floating particles in the gas flow.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles (탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가)

  • Choi, Cheol;Jung, Mi-Hee;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

Non-destructive Analysis of Nano-Cementitious Composites Using Ultrasonic and Electrical Resistance (초음파 및 전기저항을 활용한 나노-시멘트 복합체의 비파괴 분석)

  • Shin, Yangsub;Lee, Heeyoung;Cho, Sanghyeon;Park, Sohyeon;Chung, Wonseok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.322-329
    • /
    • 2021
  • Nano-cementitious composites may have defects due to poor dispersion of nanomaterials and fabrication process. These defects can cause critical problems for nano-cementitious composites, but studies related to non-destructive analysis of defects sizes inside nano-cementitious composites are insufficient. This study aims to perform non-destructive analysis of nano-cementitious composites by utilizing ultrasonic and electrical resistance. Various sizes of defects were implemented inside the specimens and the specimens were subjected to ultrasonic non-destructive analysis and electrical resistance non-destructive analysis depending on the size of defects and curing days. As a result of the experiment, ultrasonic pulse velocity decreased by up to 11% as the defects size increased, and the electrical resistance increased by up to 14% depending on the defects size. For this reason, this study concluded that non-destructive analysis using ultrasonic and electrical resistance can predict defects inside nano-cementitious composites.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

Analysis of Electrical and Physical Property of the PU/MWNT Film and Dispersion Characteristics of MWNT According to the Solvent (용매에 따른 MWNT의 분산특성과 제조된 PU/MWNT 필름의 전기적·물리적 특성 분석)

  • Kim, Jeong-Hyun;Ma, Hye-Young;Yang, Sung-Yong;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2012
  • This paper surveys the physical properties of the MWNT dispersion solution dispersed with the three types of solvents and of the polyurethane composite film for improvement of mechanical properties and electrical characteristics of PU/MWNT composite film. For this purpose, the MWNT dispersed solution was mixed with three types of solvent such as IPA, MEK and Toluene and then mixed with polyurethane (100part) with variation of loading content (0, 10, 20, 30, 40, 50 part) of MWNT dispersed solution in the ultrasonic wave dispersion apparatus. And eighteen PU/MWNT composite films were prepared as specimens. The various physical properties of these PU/MWNT films were measured and discussed with the loading content of three types of MWNT dispersed solutions. The highest absorbancy among the three types of dispersed solutions was shown in the IPA/MWNT solution. But the absorbancy of PU/MWNT films was not same as the solution. The low electrical surface and volume resistivity of PU/MWNT film were shown at the condition of 20 and 10 parts loading of IPA/MWNT dispersed solution, respectively. The low triboelectricity of PU/MWNT film was shown at the condition of above 30part loading of IPA/MWNT dispersed solution. The breaking strength and strain of PU/MWNT film prepared with IPA/MWNT dispersed solution were decreased with increasing loading content of IPA/MWNT from 10 to 40 parts. The maximum breaking strength and breaking strain according to the dispersion solution were shown on the IPA/MWNT dispersed solution. The uniform dispersion of PU/MWNT film according to the loading content of MWNT solution was shown by surface image analysis on the films dispersed with IPA.

Fabrication and Piezoelectric Strain Characteristics of PLZT Functionally Gradient Piezoelectric Actuator by Doctor Blade Process (닥터블레이드법에 의한 PLZT계 경사기능 압전 엑튜에이터의 제조와 압전 변위 특성)

  • 김한수;최승철;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.695-704
    • /
    • 1992
  • In (Pb, La)(Zr, Ti)O3 ceramic system, the functionally gradient material (FGM) was developed, and its processing and properties were investigated. The FGMs were successfully prepared through doctor blade method with acrylic binder system as well as mold stacking press method. The ultrasonic treatment was very effective for particle dispersion in slurry, and it lead to form clack-free green films. The strain-voltage characteristics of the FGM system was significantly improved which fabricated between a high piezoelectric-low dielectric and a low piezoelectric-high dielectric composition layer.

  • PDF