• Title/Summary/Keyword: Ultrasonic Test(UT)

Search Result 44, Processing Time 0.022 seconds

Low velocity Impact Characteristics of Non-flamable Composite Laminates (난연성 복합적층재의 저속충격특성)

  • 김재훈;김후식;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • Impacter tester was build of to evaluate the characterization of non-flamable Glass/phenol laminate plates under the low velocity impact. The damage of composite laminates are matrix cracking, delamination, and fiber breakage for impact energy. In this study, this is to find impact properties of Glass/phenol in used in a forehead part of lighting subway. To determine impact damage characteristics which is made in a laminate, use the UT C-scan after- macrography. And then evaluated the reduction of strength in a rate of impact energy with CAI(Compression After Impact) test

  • PDF

Systems Engineering Method to Develop Multiple BMI Nozzle Inspection System for APR1400

  • Abdallah, Khaled Atya Ahmed;Nam, GungIhn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.25-40
    • /
    • 2016
  • The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. In this study, the SE methodology is used to design a nondestructive inspection system for Bottom Mounted Instrumentation (BMI) nozzles. We developed a system that enables nondestructive inspection of BMI nozzles during regular refueling outage without removing the reactor internals. A special ultrasonic (UT) probe is introduced to scan and detect cracks within the weld region of the nozzle. A 3D model of the inspection structure system was developed along with the reactor pressure vessel (RPV) and internals which permits a virtual 3D simulation of the operation to check the design concept and effectiveness of the system and to provide a good visualization of the system. This approach allows for a virtual walk through to verify the proposed BMI nozzle inspection system.

Evaluation of the seismic performance of butt-fusion joint in large diameter polyethylene pipelines by full-scale shaking table test

  • Jianfeng Shi;Ying Feng;Yangji Tao;Weican Guo;Riwu Yao;Jinyang Zheng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3342-3351
    • /
    • 2023
  • High-density polyethylene (HDPE) pipelines in nuclear power plants (NPPs) have to meet high requirements for seismic performance. HDPE pipes have been proved to have good seismic performance, but joints are the weak links in the pipelines, and pipeline failures usually initiate from the defects inside the joints. Limited data are available on the seismic performance of butt-fusion joints of HDPE pipelines in NPPs, especially in terms of defects changes inside the joints after earthquakes. In this paper, full-scale shaking table tests were performed on a test section of suspended HDPE pipelines in an NPP, which included straight pipes, elbows, and 10 butt-fusion joints. During the tests, the seismic load-induced strain of the joints was analyzed by strain gauges, and it was much smaller than the internal pressure and self-weight-induced strain. Before and after the shaking table tests, phased array ultrasonic testing (PA-UT) was conducted to detect defects inside the joints. The locations, numbers, and dimensions of the defects were analyzed. It was found that defects were more likely to occur in elbows joints. No new defect was observed after the shaking table tests, and the defects showed no significant growth, indicating the satisfactory seismic performance of the butt-fusion joints.

A Study on Suppression of UT Grain Noise Using SSP MPO Algorithms (SSP MPO 알고리즘을 이용한 초음파 결정립 잡음 억제에 관한 연구)

  • Koo, Kil-Mo;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-89
    • /
    • 1996
  • It is very important for ultrasonic test method to evaluate the integrity of the class I components in nuclear power plants. However, as the rltrasonic test is affected by internal structures and configurations of test materials, backscattering, that is, time invariant noise is generated in large grain size materials. Due to the above reason, the received signal results in low signal to noise(S/N) ratio. Split spectrum processing(SSP) technique is effective to suppress the grain noise. The conventional SSP technique. however, has been applied to unique algorithm. This paper shows that MPO(minimization and polarity threshold) algorithm which two algorithms are applied simulatancously, was utilized, the signal processing time was shorten by using the new constant-Q SSP with the FIR filter which frequency to bandwidth ratio is constant and the optimum parameters were analysed for the signal processing to longitudinal wave and shear wave with the same requirements of inspection on nuclear power plant site. Moreover, the new ultrasonic test instrument, the reference block of the same product form and material specification, stainless stell test specimens and copper test specimens block of the same fabricated for the application of new SSP technique. As the result of experimental test with new ultrasonic test instrument and test specimens, the signal to noise ratio was improved by appying the new SSP technique.

  • PDF

Wavelet Transform Based Doconvolution of Ultrasonic Pulse-Echo Signal (웨이브렛 변환을 이용한 초음파 펄스 에코 신호의 디컨볼루션)

  • Jhang, Kyung-Young;Jang, Hyo-Seong;Park, Byung-Yll;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Ultrasonic pulse echo method comes to be difficult to apply to the multi-layered structure with very thin layer, because the echoes from the top and the bottom of the layer are superimposed. We can easily meet this problem when the silicon chip layer in the semiconductor is inspected by a SAM equipment using fairly low frequency lower than 20MHz by which severe attenuation in the epoxy mold compound of packaging material can be overcome. Conventionally, deconvolution technique has been used for the decomposition of superimposed UT signals, however it has disabilities when the waveform of the transmitted signal is distorted according to the propagation. In this paper, the wavelet transform based deconvolution(WTBD) technique is proposed as a new signal processing method that can decompose the superimposed echo signals with superior performances compared to the conventional deconvolution technique. WTBD method uses the wavelet transform in the pre-stage of deconvolution to extract out the common waveform from the transmitted and received signal with distortion. Performances of the proposed method we shown by through computer simulations using model signal with noise and we demonstrated by through experiments for the fabricated semiconductor sample with partial delamination at the top of silicon chip layer.

  • PDF

Preliminary Round Robin Test(RRT) for Program for the Inspection of Nickel Alloy Components(PINC) - Reactor Vessel Head Penetration (RVHP) -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Song, Myung-Ho;Chung, Hae-Dong;Kim, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, the PINC project. USNRC required KINS to participate in the PINC project in May 2005. KINS organized the Korean consortium at March 2006 and Pre-RRT for RVHP were performed for the preparation of PINC RRT. Through these preliminary RRT, Korea NDE teams can learn and develop the detection and sizing technique for RVHP dissimilar metal weld. These techniques are now being prepared in Korea and need to be utilized for the In-service inspection of the RVHP and BMI of Korea Nuclear Power Plants. PINC RRT mock-ups will be helpful to training.

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

Development of wall-thinning evaluation procedure for nuclear power plant piping - Part 2: Local wall-thinning estimation method

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2119-2129
    • /
    • 2020
  • Flow-accelerated corrosion (FAC), liquid droplet impingement erosion (LDIE), cavitation and flashing can cause continuous wall-thinning in nuclear secondary pipes. In order to prevent pipe rupture events resulting from the wall-thinning, most NPPs (nuclear power plants) implement their management programs, which include periodic thickness inspection using UT (ultrasonic test). Meanwhile, it is well known in field experiences that the thickness measurement errors (or deviations) are often comparable with the amount of thickness reduction. Because of these errors, it is difficult to estimate wall-thinning exactly whether the significant thinning has occurred in the inspected components or not. In the previous study, the authors presented an approximate estimation procedure as the first step for thickness measurement deviations at each inspected component and the statistical & quantitative characteristics of the measurement deviations using plant experience data. In this study, statistical significance was quantified for the current methods used for wall-thinning determination. Also, the authors proposed new estimation procedures for determining local wall-thinning to overcome the weakness of the current methods, in which the proposed procedure is based on analysis of variance (ANOVA) method using subgrouping of measured thinning values at all measurement grids. The new procedures were also quantified for their statistical significance. As the results, it is confirmed that the new methods have better estimation confidence than the methods having used until now.

Flow-accelerated corrosion assessment for SA106 and SA335 pipes with elbows and welds

  • Kim, Dong-Jin;Kim, Sung-Woo;Lee, Jong Yeon;Kim, Kyung Mo;Oh, Se Beom;Lee, Gyeong Geun;Kim, Jongbeom;Hwang, Seong-Sik;Choi, Min Jae;Lim, Yun Soo;Cho, Sung Hwan;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3003-3011
    • /
    • 2021
  • A FAC (flow-accelerated corrosion) test was performed for a straight pipe composed of the SA335 Gr P22 and SA106 Gr B (SA106-SA335-SA106) types of steel with welds as a function of the flow rate in the range of 7-12 m/s at 150 ℃ and with DO < 5 ppb at pH levels ranging from 7 to 9.5 up to a cumulative test time of 7200 h using the FAC demonstration test facility. Afterward, the experimental pipe was examined destructively to investigate opposite effects as well as entrance effects. In addition, the FAC rate obtained using a pipe specimen with a 50 mm inner diameter was compared with the rate obtained from a rotating cylindrical electrode. The effects of the complicated fluid flows at the elbow and orifice of the pipeline were also evaluated using another test section designed to examine the independent effects of the orifice and the elbow depending on the distance and the combined effects on orifice and elbow. The tests were performed under the following conditions: 130-150 ℃, DO < 5 ppb, pH 7 and a flow rate of 3 m/s. The FAC rate was determined using the thickness change obtained from commercial room-temperature ultrasonic testing (UT).

Development of Welding Quality Monitoring Method for TIG Cladding (TIG클래딩 공정에 대한 품질 모니터링기법의 개발)

  • Cho, Sang Myung;Son, Min Su;Park, Jung Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.90-95
    • /
    • 2013
  • Pipe inside clad welding is mainly used to the flow pipe of sub-sea or chemical plant. For the inside clad welding to the medium pipe with the diameter of about 12", TIG welding is frequently applied with filler metal. In this case, the clad welding has the very broad weld area over $10m^2$. And, the non-destructive test (NDT) such as ultrasonic test (UT) or radiographic testing (RT) should be conducted on the broad weld area, and it costs very high due to the time-consuming work. Therefore, the present study investigated the variation of arc voltage to develop the in-line quality monitoring system for the pipe inside TIG cladding. The 4 experimental parameters (current, arc length, wire feed position, and shield gas flow rate) varied to observe the change of arc voltage and to establish the model for the monitoring. The arc voltage was decreased when the wire was fed to the backward eccentric position(over 2mm), and the shield gas flow rate was insufficient under 10L/min. In the case of the backward eccentric position over 2mm, the bead appearance was not good and the dilution ratio was increased due to deep penetration. When the shield gas flow rate was lower than 10L/min, the bead surface was oxidized.