• Title/Summary/Keyword: Ultrasonic Sensors

Search Result 533, Processing Time 0.022 seconds

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Real-time Body Surface Motion Tracking using the Couch Based Computer-controlled Motion Phantom (CBMP) and Ultrasonic Sensor: A Feasibility Study (CBMP (Couch Based Computer-Controlled Motion Phantom)와 초음파센서에 기반한 실시간 체표면 추적 시스템 개발: 타당성 연구)

  • Lee, Suk;Yang, Dae-Sik;Park, Young-Je;Shin, Dong-Ho;Huh, Hyun-Do;Lee, Sang-Hoon;Cho, Sam-Ju;Lim, Sang-Wook;Jang, Ji-Sun;Cho, Kwang-Hwan;Shin, Hun-Joo;Kim, Chul-Yong
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • Respiration sating radiotherapy technique developed In consideration of the movement of body surface and Internal organs during respiration, is categorized into the method of analyzing the respiratory volume for data processing and that of keeping track of fiducial landmark or dermatologic markers based on radiography. However, since these methods require high-priced equipments for treatment and are used for the specific radiotherapy. Therefore, we should develop new essential method whilst ruling out the possible problems. This study alms to obtain body surface motion by using the couch based computer-controlled motion phantom (CBMP) and US sensor, and to develop respiration gating techniques that can adjust patients' beds by using opposite values of the data obtained. The CBMP made to measure body surface motion is composed of a BS II microprocessor, sensor, host computer and stopping motor etc. And the program to control and operate It was developed. After the CBMP was adjusted by entering random movement data, and the phantom movements were acquired using the sensors, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using a rabbit, the real-time respiration gating techniques were drawn by operating the phantom with the opposite values of the data. The result of analysing the acquisition-correction delay time for the data value shows that the data value coincided within 1% and that the acquistition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. And the movement was the maximum movement was 6 mm In Z direction, In which the respiratory cycle was 2.9 seconds. This study successfully confirms the clinical application possibility of respiration gating techniques by using a CBWP and sensor.

  • PDF

Analysis of growth environment of Flammulina velutipes using the smart farm cultivation technology (병재배 팽이버섯의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Kwan-Woo;Jeon, Jong-Ock;Lee, Kyoung-Jun;Kim, Young-Ho;Lee, Chan-Jung;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2019
  • In this study, smart farm technology was used by farmers cultivating 'CHIKUMASSHU T-011' in order to develop an optimal growth model for the precision cultivation of bottle-grown winter mushroom and the results of the same are mentioned herein. Farmers participating in the experiment used 60 ㎡ of bed area with 4 rows and 13 columns of shelf shape, 20 horsepower refrigerator, 100T of sandwich panel for insulation, 6 ultrasonic humidifiers, 12 kW of heating, and 20,000 bottles of Flammulina velutipes mushroom spores. The temperature, humidity, and carbon dioxide concentrations, which directly affect the growth of the mushroom, were collected and analyzed from the environmental sensors installed at the winter mushroom cultivation area. The initial temperature was found to be 14.5℃, which was maintained at 14℃ to 15℃ until the 10th day. In the restriction phase, the initial temperature was 4℃ and was maintained between 2℃ and 3℃ until the 15th day, while during the growth phase, it was maintained between 7.5℃ to 9.5℃. Analysis of the humidity data revealed initial humidity to be 100%, which varied between 88% to 98% during primordia formation period. The humidity remained between 77% to 96% until the 15th day, in the restriction phase and between 75% to 83% during the growth phase. The initial carbon dioxide concentration was 3,500 ppm and varied between 3,500 ppm to 6,000 ppm during primordia formation period and was maintained at 6,000 ppm until the 15th day. During the growth phase, the carbon dioxide concentration was found to be over 6,000 ppm. Fruiting body characteristics of 'CHIKUMASSHU T-011' cultivated in the farmhouse were as follows: Pileus diameter of 7.5 mm and thickness of 4.1 mm, stipe thickness of 3.3 mm, and length of 154.2 mm. The number of valid fruiting bodies was 1,048 unit per 1,400 mL bottle, and the individual weight was 0.71 g per unit. The yield of fruiting bodies was 402.8 g per 1,400 mL bottle.