• 제목/요약/키워드: Ultrasonic Pulse Velocity Method

검색결과 113건 처리시간 0.021초

Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing

  • Wang, H.Y.;Li, L.S.;Chen, S.H.;Weng, C.F.
    • Computers and Concrete
    • /
    • 제6권3호
    • /
    • pp.225-234
    • /
    • 2009
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce lightweight aggregate concrete (LWAC).This study aimed to assess the compressive strength and homogeneity of LWAC using ultrasonic-echo sensing. Concrete specimens were prepared using aggregates of four different particle density, namely 800, 1100, 1300 and 2650 kg/$m^3$. The LWAC specimens were cylindrical and a square wall with core specimens drilled. Besides compressive strength test, ultrasonic-echo sensing was employed to examine the ultrasonic pulse velocity and homogeneity of the wall specimens and to explore the relationship between compressive strength and ultrasonic pulse velocity. Results show that LWA, due to its lower relative density, causes bloating, thus resulting in uneven distribution of aggregates and poor homogeneity. LWAC mixtures using LWA of particle density 1300 kg/$m^3$ show the most even distribution of aggregates and hence best homogeneity as well as highest compressive strength of 63.5 MPa. In addition, measurements obtained using ultrasonic-echo sensing and traditional ultrasonic method show little difference, supporting that ultrasonic-echo sensing can indeed perform non-destructive, fast and accurate assessment of LWAC homogeneity.

Ultrasonic Velocity and Absorption Measurements in Egg White

  • Kim, Jeong-Koo;Bae, Jong-Rim
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권3E호
    • /
    • pp.126-131
    • /
    • 2002
  • Ultrasonic measurements are made in egg white to study the properties of the solution of the natural protein. The high-Q ultrasonic resonator method is used to get the ultrasonic absorption spectra over the range 0.2-10 ㎒ at 20℃. It is proportional to the 1.25th power of the frequency. The gelation process caused by heat is studied from the change in the velocity and the absorption. at 3 ㎒ using the pulse echo overlap technique over the range of 10-80℃. The absorption decreases with increasing temperature up to 60℃ where it turns up sharply and rapidly increases thereafter. The strong absorption in the gel region is described by the interaction between the solution and the network structure made of protein. Very slow variation in time elapse is observed after the temperature is quickly raised. It would be a real-time observation of the network building process and the characteristic time for the process is shown to be 400 min. A hysteresis phenomenon with respect to the temperature is observed. This phenomenon is associated with the memorizing effect of the network structure of protein of the gel.

규암 골재를 사용한 콘크리트 구조물의 재령에 따른 비파괴강도 추정식 (Prediction Formulas for Nondestructive Strength of Quartzite Aggregate Concrete)

  • 오병환;김동욱;이승석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.137-146
    • /
    • 2001
  • The non-destructive tests are widely used to predict the strength of existing structures. The purpose of the present study is to propose the prediction equations for strength evaluation of concrete structures. The present study focuses on the rebound method and ultrasonic pulse velocity method for quartzite aggregate concrete. The major test variables include the water-cement ratio and curing methods. The water-cement ratio are 0.4, 0.5, 0.6, 0.7, respectively and the curing method covers ail-dry condition and standard curing condition. The prediction equations for strength of concrete are proposed from the present test data.

  • PDF

Ultrasonic Velocity and Absorption Measurements in an Aqueous Solution of Poly(sodium 4-styrenesulfonate)

  • Rae Jong-Rim
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.559-563
    • /
    • 2004
  • Both the ultrasonic velocity at 3 MHz and the absorption coefficient in the frequency range from 0.2 to 2 MHz were measured for aqueous solutions of poly(sodium 4-styrenesulfonate) over the concentration range from 5 to $25\%$ (by weight). The pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range from 10 to $90^{\circ}C;$ the high-Q ultrasonic resonator method was used for the measurement of the absorption coefficient at $20^{\circ}C.$ The velocities exhibited their maximum values at ca. 55, 59, 63, 67, and $71^{\circ}C.$ for the 25, 20, 15, 10, and $5\%$ solutions, respectively. The velocity increased with respect to the poly(sodium 4-styrene-sulfonate) concentration at a given temperature. A study of the concentration dependence of the both the relaxation frequency and amplitude indicated that the relaxation at ca. 200 kHz is related to structural fluctuations of the polymer molecules, such as the segmental motions of the polymer chains and that the relaxation at ca. 1 MHz resulted from the proton transfer reactions of the oxygen sites of $SO_3.$ Both the absorption and the shear viscosity increase upon increasing the polymer concentration, but they decrease upon increasing the temperature.

재령을 고려한 콘크리트의 비파괴강도평가 (Nondestructive Evaluation of Concrete Strength Considering Aging Effect)

  • 김영진;이상민;최홍식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.157-165
    • /
    • 1999
  • The nondestructive testing methods are commonly used to determine the in-situ compressive strength of concrete. The correlation curves to evaluate the effect of aging on the development of concrete strength was proposed. Thirty two ${\Phi}10{\times}20cm$ cylinder specimens were cast from 5 batches having different strength levels. The correlation curves for rebound hammer method, ultrasonic pulse velocity method and combined method were derived from the laboratory tests and multiple regression analysis. To account for the change of condition such as surface hardness, internal moisture contents, the aging coefficients are applied to the correlation curves. From the comparison the nondestructive strength with the core strength taken from the existing reinforced concrete structures, the validity of the proposed correlation curves are verified.

  • PDF

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.

Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks

  • Abdelhedi, Mohamed;Aloui, Monia;Mnif, Thameur;Abbes, Chedly
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.371-384
    • /
    • 2017
  • Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.

초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교 (Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method)

  • 이회근;이광명;김영환
    • 비파괴검사학회지
    • /
    • 제23권2호
    • /
    • pp.98-106
    • /
    • 2003
  • 비파괴시험(NDT)은 구조물의 기능에 손상을 주지 않으면서 콘크리트에 대한 많은 정보를 준다. 여러 가지 NDT 방법들 중에서, 초음파 속도법과 충격반향기법과 같이 탄성파의 속도를 이용하는 방법은 콘크리트의 압축강도, 탄성계수, 포아송비의 추정뿐만 아니라, 내부 미세구조 변화 모니터링과 결함 탐지 등을 위해 이용되고 있다. 본 연구에서는 물-결합재비가 $0.27{\sim}0.50$이고 시멘트 중량의 20%를 플라이 애쉬로 대체 사용한 콘크리트를 제조한 후, 동일한 콘크리트에 대해 초음파 속도법과 충격반향기법을 이용하여 종파 속도를 각각 측정하여 서로 비교하였다. 실험 결과, 콘크리트 공시체로부터 측정된 초음파 속도가 충격반향기법에 의해 측정된 종파 속도, 즉 막대파 속도보다 큰 경향을 나타내었으며, 이들의 차이는 재령이 증가함에 따라 그리고 콘크리트의 강도가 커질수록 각각 감소하는 경향을 나타내었다. 또한, 동포아송비, 정탄성계수, 동탄성계수, 속도-강도의 상관관계 등을 실험적으로 결정하였다. 그 결과, 동적인 방법으로 결정되는 포아송비와 탄성계수가 정적인 시험에 의한 것보다 크게 나타났다. 따라서, 탄성파 속도를 이용하여 콘크리트의 성질들을 보다 정확하게 추정하기 위해서는 속도 특성에 대한 이해가 필요할 것으로 사료된다.

PRF에 따른 속도 모호성 분석 (Analysis of Velocity Ambiguity according to Pulse Repetition Frequency)

  • 이종길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.965-966
    • /
    • 2014
  • 초음파를 이용한 거리 및 속도측정에서는 PRF(Pulse Repitition Frequency) 선정에 따른 거리 및 속도 모호성 문제가 큰 장애 요인 중의 하나이다. 따라서 이러한 장애 극복을 위한 신호파형 발생시 PRF 선정 방법과 측정 결과에 미치는 영향을 분석하였다.

  • PDF